
Acta Numerica (2002), pp. 519–584 c© Cambridge University Press, 2002

DOI: 10.1017/S0962492902000089 Printed in the United Kingdom

Numerical methods for

large eigenvalue problems

Danny C. Sorensen

Department of Computational and Applied Mathematics,

Rice University,

6100 Main St., MS134,

Houston, TX 77005-1892, USA

E-mail: sorensen@rice.edu

Over the past decade considerable progress has been made towards the numer-
ical solution of large-scale eigenvalue problems, particularly for nonsymmetric
matrices. Krylov methods and variants of subspace iteration have been im-
proved to the point that problems of the order of several million variables can
be solved. The methods and software that have led to these advances are
surveyed.

CONTENTS

1 Introduction 519
2 Notation and background 522
3 Single-vector iterations 523
4 Krylov subspace projection methods 525
5 Convergence of polynomial restart methods 545
6 Subspace iteration methods 556
7 The generalized eigenproblem 564
8 Eigenvalue software 571
9 Conclusions and acknowledgements 580
References 581

1. Introduction

The algebraic eigenvalue problem

Ax = xλ

is fundamental to scientific computing. Large-scale problems are of increas-
ing importance, and recent advances in the area of nonsymmetric problems
have enormously expanded capabilities in areas such as linear stability
and bifurcation analysis. Considerable progress has been made over the
past decade towards the numerical solution of large-scale nonsymmetric

520 D. C. Sorensen

problems. However, there is still a great deal to be done. This is a very
challenging area of research that is still very active.

This survey is an attempt to introduce some of these advances. It
emphasizes two main approaches: Krylov subspace projection and a variant
of subspace iteration. Within these two classes, the implicitly restarted
Arnoldi method (Sorensen 1992) and the Jacobi–Davidson method (Sleijpen
and van der Vorst 1995) are featured. There are several important competing
methods but these are discussed in far less detail. Availability of reliable
software for large symmetric and nonsymmetric problems has enabled many
significant advances in applications. Problems of the order of several million
variables are now being solved on massively parallel machines. Problems of
order ten thousand can now be solved on a laptop computer. Software and
performance issues are therefore a third component of this survey.

Large eigenvalue problems arise in a variety of settings. Two important
areas are vibrational analysis of structures and linear stability analysis of
fluid flow. The former analysis usually leads to symmetric eigenproblems
where the goal typically is to determine the lowest modes. The latter analysis
leads to nonsymmetric eigenproblems and the interest is in determining if
the eigenvalues lie in a particular half of the complex plane. In both of these
settings the discrete problem can become extremely large, but only a few
eigenvalues are needed to answer the question of interest.

A typical source of large-scale problems is the discretization of a partial
differential equation, for example,

Lu = uλ for u ∈ Ω, (1.1)

u = 0 for u ∈ ∂Ω,

where L is some linear differential operator. Often, L is a linearization of
a nonlinear operator about a particular solution to the nonlinear equation,
such as a steady state. A number of techniques may be used to discretize
L. The finite element method provides an elegant discretization, and an
oversimplified sketch of this discretization follows. If W is a linear space (or
vector space) of functions in which the solution to (1.1) may be found, and
Wn ⊂ W is an n-dimensional subspace with basis functions {φj}, then an
approximate solution un can be expanded in the form

un =

n∑

j=1

φjξj .

A variational or Galerkin principle is used, depending on whether L is self-
adjoint, to obtain

〈
φi,L

(
n∑

j=1

φjξj

)〉
=

〈
φi,

n∑

j=1

φjξj

〉
λ,

Eigenvalue methods 521

where 〈·, ·〉 is an inner product on Wn. This leads to the following systems
of equations:

n∑

j=1

〈φi,Lφj〉ξj =

n∑

j=1

〈φi, φj〉ξjλ, (1.2)

for 1 ≤ i ≤ n. We may rewrite (1.2) and obtain the matrix equation

Ax = Bxλ,

where

Ai,j = 〈φi,Lφj〉,
Bi,j = 〈φi, φj〉,
xT = [ξ1, . . . , ξn]

T ,

for 1 ≤ i, j ≤ n.
There are several attractive features of a FEM discretization. The bound-

ary conditions are naturally and systematically imposed in a consistent way
in the discrete problem. Other important physical properties can also be
incorporated into the finite element spaces. Rayleigh quotients with respect
to (A,B) give Rayleigh quotients for L:

v∗Av

v∗Bv
=
〈φ,Lφ〉
〈φ, φ〉 ,

where φ ∈ Wn is the function defined by the components of v as expansion
coefficients. Since φ ∈ Wn ⊂ W, in the self-adjoint case the smallest gener-
alized eigenvalue of (A,B) is an upper bound for the smallest eigenvalue of
the continuous operator L. Typically the basis functions are chosen so that
A and B are sparse matrices, that is, only a few of the entries in a typical
row are nonzero.

In particular, methods for solving the eigenproblem that avoid matrix
factorizations and similarity transformations are of interest. The methods
discussed here only require matrix-vector products, or perhaps a single
sparse direct matrix factorization. Typically, only a few eigenpairs are
sought and these methods only require storage proportional to n ·k, where k
is the number of eigenpairs desired. Advantages of such methods are obvious
and we list a few:

• sparsity of the matrices is exploited,

• matrices need not be stored – we only need a subroutine for computing
the necessary matrix-vector product,

• parallelism is easy.

522 D. C. Sorensen

2. Notation and background

Before discussing methods, we give a brief review to fix notation and
introduce basic ideas. We shall consider n × n square matrices A with
complex entries. The notation v∗,A∗ will denote the complex conjugate-
transpose of a vector (if complex), or the transpose (if real), and likewise
for matrices. We shall use ‖v‖ to denote the Euclidean norm of a vector
v and ‖A‖ to denote the induced matrix two-norm. The real and complex
number fields will be denoted by R and C respectively. The set of numbers
σ(A) := {λ ∈ C : rank(λI − A) < n)} is called the spectrum of A.
The elements of σ(A) are the eigenvalues of A and are the n roots of the
characteristic polynomial pA(λ) := det(λI−A). To each distinct eigenvalue
λ ∈ σ(A) corresponds at least one nonzero right eigenvector x such that
Ax = xλ. A nonzero vector y such that y∗A = λy∗ is called a left

eigenvector. The algebraic multiplicity na(λ) is the multiplicity of λ as
a root of pA, and the dimension ng(λ) of Null(λI − A) is the geometric

multiplicity of λ. A matrix is defective if ng(λ) < na(λ), for some λ, and
otherwise A is nondefective. The eigenvalue λ is simple if na(λ) = 1, and
A is derogatory if ng(λ) > 1 for some λ.

A subspace S of C
n×n is an invariant subspace of A if AS ⊂ S. It is

straightforward to show that if A ∈ C
n×n, V ∈ C

n×k and H ∈ C
k×k satisfy

AV = VH, (2.1)

then S := Range(V) is an invariant subspace of A. Moreover, if V has full
column rank k, then the columns of V form a basis for this subspace and
σ(H) ⊂ σ(A). If k = n then σ(H) = σ(A), and A is said to be similar to
H. The matrix A is diagonalizable if it is similar to a diagonal matrix. We
use the notation S = S1 ⊕ S2 to denote that S is a direct sum of subspaces
S1 and S2 (S = S1 + S2 and S1 ∩ S2 = {0}).

The Schur decomposition is fundamental to this discussion and is relevant
to some very successful numerical algorithms.

Theorem 2.1. Every square matrix A possesses a Schur decomposition

AQ = QR, (2.2)

where Q is unitary (Q∗Q = I) and R is upper triangular. The diagonal
elements of R are the eigenvalues of A.

Schur decompositions are not unique: the eigenvalues of A may appear
on the diagonal of R in any specified order. From the Schur decomposition,
it is easily seen that:

• the matrix A is normal (AA∗ = A∗A) if and only if A = QΛQ∗ with
Q unitary, and Λ diagonal,

• the matrix A is Hermitian (A = A∗) if and only if A = QΛQ∗ with
Q unitary, and Λ is diagonal with real diagonal elements.

Eigenvalue methods 523

In either case the eigenvectors of A are the orthonormal columns of Q and
the eigenvalues are the diagonal elements of Λ.

If Vk represents the leading k columns of Q, and Rk the leading principal
k × k submatrix of R, then

AVk = VkRk.

This is called a partial Schur decomposition of A, and there is always a par-
tial Schur decomposition of A with the diagonal elements of Rk consisting
of any specified subset of k eigenvalues of A. Moreover, Range{Vk} is an
invariant subspace of A corresponding to these eigenvalues.

3. Single-vector iterations

Single-vector iterations are the simplest and most storage-efficient ways
to compute a single eigenvalue and its corresponding eigenvector. The
classic power method is the simplest of these and underlies the behaviour
of virtually all methods for large-scale problems. This stems from the fact
that one is generally restricted to repeated application of a fixed operator to
produce a sequence of vectors. The power method is shown in Algorithm 1.

Given a nonzero v;
for k = 1, 2, 3, . . . , until convergence

w = Av

j = i max(w)
λ = w(j)
v← w/λ

end

Algorithm 1. The power method

This method is suggested by the observation

Akv1 =
n∑

j=1

qjλ
k
jγj ,

where Aqj = qjλj and v1 =
∑n

j=1 qjγj , and this leads to a straightforward
convergence analysis when A is diagonalizable.

If the eigenvalues of A are indexed such that |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥
|λn|, then we have

1

λk1
Akv1 = q1γ1 +

(
λ2

λ1

)k
zk, (3.1)

524 D. C. Sorensen

where zk :=
∑n

j=2 qj(
λj
λ2

)kγj . The ordering of λj implies that ‖zk‖ is
uniformly bounded. Of course, λ1 is not available, but it is easily seen
that, after k iterations, the contents of v are

v =
Akv1

eTjoA
kv1

=
λ−k1 Akv1

λ−k1 eTjoA
kv1

=
q1γ1 + (λ2

λ1
)kzk

eTjo(q1γ1 + (λ2

λ1
)kzk)

= q1 +O
(∣∣∣∣
λ2

λ1

∣∣∣∣
k)
→ q1, as k →∞,

where jo = i max(q1) and we assume q1(jo) = 1. The function i max(w)
selects the index of the first element of largest magnitude. For sufficiently
large k, the selection of j = i max(w) in Algorithm 1 returns j = jo (except
in one annoying case that is of no real consequence).

This simple analysis must be modified when A is defective. In this case
the behaviour of powers of Jordan blocks of spectral radius less than one
replace the powers of ratios of eigenvalues.

Scaling by the component of largest magnitude facilitates the convergence
analysis. We could just as easily scale to the unit ball in any of the standard
vector norms. The directions of the vectors v are the same regardless.
Often the eigenvalue estimate is taken to be the Rayleigh quotient λ =
v∗Av, where v = w/‖w‖, and this is certainly recommended when A is
Hermitian, since the eigenvalue estimates converge about twice as fast with
this estimate.

The two major drawbacks to the power method are the rate of conver-
gence, which is proportional to |λ2

λ1
| and can be arbitrarily slow, and that

only one eigenvector can be computed.
The problem of slow convergence and convergence to interior eigenvalues

may, of course, be remedied by replacing A by (A − σI)−1, where σ is
near an eigenvalue of interest. Later, more will be said about such spectral
transformations. To address the problem of obtaining several eigenvectors,
deflation schemes have been devised to find a subsequent eigenvector once
the first one has converged (Saad 1992). Wielandt deflation is one of these.
However, this scheme is not suitable for the nonsymmetric problem.

It is clear that various linear combinations of power iterates might
be devised to approximate additional eigenvectors. For example, v̂j =
(vj − vj−1λ1)/λ2 will converge to a multiple of q2. However, there is a

Eigenvalue methods 525

systematic way to consider all such possibilities at once and pick the optimal
one automatically.

4. Krylov subspace projection methods

A systematic way to approach this question is to consider all possible linear
combinations of the leading k vectors in the power sequence and ask how
the best possible approximate eigeninformation might be extracted. The
successive vectors produced by a power iteration may contain considerable
information along eigenvector directions corresponding to eigenvalues near
the one with largest magnitude. A single-vector power iteration simply
ignores this information. Subspace projection provides a way to extract this
additional information. Rather than discard the vectors produced during
the power iteration, additional eigen-information is obtained by looking at
various linear combinations of the power sequence. This immediately leads
to consideration of the Krylov subspace

Kk(A,v) := Span{v,Av,A2v, . . . ,Ak−1v},
and to seek the best approximate eigenvector that can be constructed from
this subspace.

Approximate eigenpairs are constructed by imposing a Galerkin condition.
Given any k-dimensional subspace S of C

n, we define a vector x ∈ S to be
a Ritz vector , with corresponding Ritz value θ, if the Galerkin condition

〈w,Ax− xθ〉 = 0, for all w ∈ S, (4.1)

is satisfied, with 〈·, ·〉 denoting some inner product on C
n. In this setting, we

are interested in S = Kk(A,v1). More general subspaces will be considered
later.

The definition of Kk := Kk(A,v) implies that every w ∈ Kk is of the
form w = φ(A)v1 for some polynomial φ of degree less than k and also
that Kj−1 ⊂ Kj for j = 2, 3, . . . , k. If a sequence of orthogonal bases Vj =
[v1,v2, . . . ,vj] has been constructed with Kj = Range(Vj) and V∗

jVj = Ij ,
then it is fairly straightforward to see that vj = φj−1(A)v1 where φj−1 is a
polynomial of degree j − 1. To extend the basis for Kk to one for Kk+1, a
new vector must be constructed with a component in the direction of Akv1

and then orthogonalized with respect to the previous basis vectors. Since
vk is the only basis vector available with a component in the direction of
Ak−1v1, the new basis vector vk+1 is obtained by

fk = Avk −Vkhk, (4.2)

vk+1 = fk/‖fk‖, (4.3)

where the vector hk is constructed to achieve V∗
kfk = 0. Of course, the

orthogonality of the columns of Vk gives the formula hk = V∗
kAvk.

526 D. C. Sorensen

This construction provides a crucial fact concerning fk:

‖fk‖ = min
h

‖Avk −Vkh‖ = min ‖φ(A)v1‖, (4.4)

where the second minimization is over all polynomials φ of degree k with

the same leading coefficient as φk−1 (i.e., limτ→∞
τφk−1(τ)
φ(τ) = 1, where vk =

φk−1(A)v1).
This construction fails when fk = 0, but in this case

AVk = VkHk,

where Hk = V∗
kAVk = [h1,h2, . . . ,hk] (with a slight abuse of notation).

Hence, this ‘good breakdown’ happens precisely when Kk is an invariant
subspace of A. The precise conditions that cause fk = 0 are introduced
later in connection with restarting.

4.1. The Arnoldi factorization

The construction leading to the formulas in (4.2) results in the fundamental
Arnoldi method for constructing an orthonormal basis for Kk. It expresses a
relation between the matrix A, the basis matrix Vk and the residual vector
fk of the form

AVk = VkHk + fke
∗
k,

where Vk ∈ C
n×k has orthonormal columns, V∗

kfk = 0 and Hk = V∗
kAVk

is a k× k upper Hessenberg matrix with nonnegative subdiagonal elements.
This will be called a k-step Arnoldi factorization of A. When A is Hermitian
this implies Hk is real, symmetric and tridiagonal and then the relation is
called a k-step Lanczos factorization of A. The columns of Vk are referred
to as the Arnoldi vectors or Lanczos vectors, respectively.

Ritz pairs satisfying the Galerkin condition (4.1) are derived from the
eigenpairs of the small projected matrix Hk. If Hky = yθ, then the vector
x = Vky satisfies

‖Ax− xθ‖ = ‖(AVk −VkHk)y‖ = |βke∗ky|,

where βk := ‖fk‖. Observe that if (x, θ) is a Ritz pair then

θ = y∗Hky = (Vky)∗A(Vky) = x∗Ax

is a Rayleigh quotient (assuming ‖y‖ = 1), and the associated Rayleigh
quotient residual r(x) := Ax− xθ satisfies

‖r(x)‖ = |βke∗ky|.

Eigenvalue methods 527

When A is Hermitian, this relation may be used to provide computable
rigorous bounds on the accuracy of the eigenvalues of Hk as approximations
to eigenvalues of A (Parlett 1980). Of course, when A is non-Hermitian, a
small residual does not necessarily imply an accurate approximate eigenpair.
Nonnormality effects may corrupt the accuracy. In any case, in exact
arithmetic, when fk = 0 these Ritz pairs become exact eigenpairs of A.

The explicit steps needed to form a k-step Arnoldi factorization are given
in Algorithm 2. The factorization is represented visually in Figure 1.

v1 = v/‖v‖;
w = Av1; α1 = v∗

1w;
f1 ← w − v1α1;
V1 ← [v1]; H1 ← [α1];
for j = 1, 2, 3, . . . , k − 1,

βj = ‖fj‖; vj+1 ← fj/βj ;
Vj+1 ← [Vj ,vj+1];

Ĥj ←
[

Hj

βje
∗

j

]
;

w← Avj+1;
h← V∗

j+1w;
fj+1 ← w −Vj+1h;

Hj+1 ← [Ĥj ,h];
end

Algorithm 2. k-step Arnoldi factorization

Figure 1. Arnoldi visualization

528 D. C. Sorensen

The formulas given here are based on the classical Gram–Schmidt (CGS)
orthogonalization process. Often, the orthogonalization is expressed in
terms of the modified Gram–Schmidt (MGS) process. When the Arnoldi
factorization is used to approximate the solution of a linear system, MGS
is usually adequate. However, for eigenvalue calculations, the orthogonal
basis is very important numerically. In finite precision, MGS does not
provide an orthogonal basis and the orthogonality deteriorates in proportion
to the condition number of the matrix [v,Av, . . . ,Ak−1v]. In the restarting
schemes we shall devise, it is a goal to reach a state of dependence in order
to obtain fk = 0, and MGS is inappropriate for this situation. A second
drawback for MGS is that it must be expressed in terms of Level 1 BLAS
(Lawson, Hanson, Kincaid and Krogh 1979).

When expressed in terms of CGS, the dense matrix-vector products
V∗
j+1w and Vj+1h may be coded in terms of the Level 2 BLAS opera-

tion GEMV (Dongarra, DuCroz, Hammarling and Hanson 1988). This
provides a significant performance advantage on virtually every platform
from workstation to supercomputer.

Unfortunately, the CGS process is notoriously unstable and will fail
miserably in this setting without modification. However, it can be rescued
via a technique proposed by Daniel, Gragg, Kaufman and Stewart (DGKS)
in 1976. This provides an excellent way to construct a vector fj+1 that is
numerically orthogonal to Vj+1. It amounts to computing a correction

c = V∗
j+1fj+1; fj+1 ← fj+1 −Vj+1c; h← h + c;

just after the construction of fj+1 if necessary. One may perform a simple
test to avoid this DGKS correction if it is not needed. The correction only
needs to be computed if ‖h‖ < η(‖h‖2 + ‖fj+1‖2)1/2, where 0 < η < 1 is
a specified parameter. The test ensures that the new vector Av makes an
angle greater than cos−1η with the existing Krylov subspace. This mech-
anism maintains orthogonality to full working precision at very reasonable
cost. The special situation imposed by the restarting scheme we are about to
discuss makes this modification essential for obtaining accurate eigenvalues
and numerically orthogonal Schur vectors (eigenvectors in the Hermitian
case). This scheme is visualized in Figure 2, where it is shown that the
initial projection Vh of w = Av is the exact projection of a perturbed
vector. The correction vector c then corrects the non-orthogonal vector
f = w −Vh to a new one f+ ← f −Vc that is orthogonal to Range(V).

It has been well documented that failure to maintain orthogonality leads
to numerical difficulties. In the Hermitian case, Paige (1971) showed that
the loss of orthogonality occurs precisely when an eigenvalue of Hj is close
to an eigenvalue of A. In fact, the Lanczos vectors lose orthogonality in
the direction of the associated approximate eigenvector. Failure to main-
tain orthogonality results in spurious copies of the approximate eigenvalue

Eigenvalue methods 529

w = Av
f = w - Vh

Range(V)

VcVh + Vc

- Vc

Figure 2. DGKS correction

produced by the Lanczos method (Algorithm 4). Implementations based on
selective and partial orthogonalization (Grimes, Lewis and Simon 1994, Par-
lett and Scott 1979, Simon 1984) monitor the loss of orthogonality and per-
form additional orthogonalization steps only when necessary. The methods
developed in Cullum and Willoughby (1981, 1985) and in Parlett and Reid
(1981) use the three-term recurrence with no re-orthogonalization steps.
Once a level of accuracy has been achieved, the spurious copies of computed
eigenvalues are located and deleted. Then the Lanczos basis vectors are
regenerated from the three-term recurrence and Ritz vectors are recursively
constructed in place. This is a very competitive strategy when the matrix-
vector product w← Av is relatively inexpensive.

4.2. Restarting the Arnoldi process

A clear difficulty with the Lanczos/Arnoldi process is that the number of
steps required to calculate eigenvalues of interest within a specified accuracy
cannot be predetermined. This depends completely on the starting vector
v1, and generally eigen-information of interest does not appear until k gets
very large. In Figure 3 the distribution in the complex plane of the Ritz
values (shown in grey dots) is compared with the spectrum (shown as +s).
The original matrix is a normally distributed random matrix of order 200
and the Ritz values are from a (k = 50)-step Arnoldi factorization. Note
that hardly any Ritz values appear in the interior and also that very few
eigenvalues of A are well approximated. Eigenvalues at the extremes of the
spectrum of A are clearly better approximated than the others.

530 D. C. Sorensen

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 3. Typical distribution of Ritz values

For large problems, it is clearly intractable to compute and store a
numerically orthogonal basis set Vk for large k. Storage requirements are
O(n ·k) and arithmetic costs are O(n ·k2) flops to compute the basis vectors
plus O(k3) flops to compute the eigensystem of Hk.

To control this cost, restarting schemes have been developed that iterat-
ively replace the starting vector v1 with an ‘improved’ starting vector v+

1 ,
and then compute a new Arnoldi factorization of fixed length k. Beyond the
obvious motivation to control computational cost and storage overheads,
there is a clear interest in forcing fk = 0. However, this is useful only if the
spectrum σ(Hk) has the desired properties. The structure of fk guides the
strategy. The goal is to iteratively force v1 to be a linear combination of
eigenvectors of interest.

Since v1 determines the subspace Kk, this vector must be constructed to
select the eigenvalues of interest. The following lemmas serve as a guide.

Lemma 4.1. If v =
∑k

j=1 qjγj where Aqj = qjλj , and

AV = VH + feTk

is a k-step Arnoldi factorization with unreduced H, then f = 0 and σ(H) =
{λ1, λ2, . . . , λk}.

This lemma follows easily from the observation that φ(A)v1 = 0 with

φ(τ) =
∏k
i=1(τ − λj) together with the minimization property (4.4), which

implies fk = 0. (An upper Hessenberg matrix H is unreduced if no element
of the first subdiagonal is zero.) A more precise statement is as follows.

Eigenvalue methods 531

Lemma 4.2. fk = 0 if and only if v1 = Qky, where AQk = QkRk is a
partial Schur decomposition of A with Rk non-derogatory. Moreover, the
Ritz values of A with respect to Kk are eigenvalues of A, and are given by
the diagonal elements of Rk.

Thus, a more general and superior numerical strategy is to force the
starting vector to be a linear combination of Schur vectors that span the
desired invariant subspace.

Restarting was initially proposed by Karush (1951) soon after the Lanczos
algorithm appeared (Lanczos 1950). Subsequently, there were developments
by Paige (1971) Cullum and Donath (1974) and Golub and Underwood
(1977) Then, Saad (1984) developed a polynomial restarting scheme for
eigenvalue computation based on the acceleration scheme of Manteuffel
(1978) for the iterative solution of linear systems.

4.3. Polynomial restarting

Polynomial restarting strategies replace v1 by

v1 ← ψ(A)v1,

where ψ is a polynomial constructed to damp unwanted components from
the starting vector. If v1 =

∑n
j=1 qjγj where Aqj = qjλj , then

v+
1 = ψ(A)v1 =

n∑

j=1

qjγjψ(λj).

The idea is to force the starting vector to be ever closer to an invariant
subspace, by constructing ψ so that ψ(λ) is as small as possible on a region
containing the unwanted eigenvalues. This is motivated by Lemmas 4.1
and 4.2. Because of this effect of filtering out (damping) the unwanted
components, we often refer to these polynomials as filter polynomials, and
we refer to their roots as filter shifts. The reason for this terminology will
become clear when we introduce implicit restarting.

An iteration is defined by repeatedly restarting until the updated Arnoldi
factorization eventually contains the desired eigenspace. For more informa-
tion on the selection of effective restarting vectors, see Saad (1992). One of
the more successful approaches is to use Chebyshev polynomials in order to
damp unwanted eigenvector components in the available subspace.

Explicit restarting techniques are easily parallelized, in contrast to the
overheads involved in implicit restarting (Section 4.4). The reason is that a
major part of the work is in matrix-vector products. When we have to solve
the eigenproblem on a massively parallel computer for a matrix that allows
inexpensive matrix-vector products, this may be an attractive property.

532 D. C. Sorensen

Two possibilities for constructing ψ suggest themselves immediately. One
is to construct the polynomial to be ‘small’ in magnitude on the unwanted
set of eigenvalues and large on the wanted set. This criterion can be met by
constructing a polynomial that best approximates 0 on a specified set that
encloses the unwanted set and excludes the wanted set of eigenvalues. The
other possibility is to use the best available approximation to the wanted
eigenvectors. These are the Ritz vectors, and so it makes sense to select the
current Ritz vectors corresponding to Ritz values that best approximate the
wanted eigenvalues, and form

v+ =
k∑

j=1

q̂jγj . (4.5)

Since each Ritz vector is of the form q̂j = φj(A)v, where φj is a polynomial
of degree j − 1 < m, this mechanism is also a polynomial restart. In Saad
(1992), heuristics are given for choosing the weights γj .

A third way is to specify the polynomial ψ by its roots. A fairly obvious
choice is to find the eigenvalues θj of the projected matrix H and sort these
into two sets according to a given criterion: the wanted set W = {θj : j =
1, 2, . . . , k} and the unwanted set U = {θj : j = k+1, k+2, . . . , k+p}. Then
we specify the polynomial ψ as the polynomial with these unwanted Ritz
values as its roots. This choice of roots, called exact shifts, was suggested in
Sorensen (1992).

Morgan (1996) found a remarkable property of this strategy. If exact shifts

are used to define ψ(τ) =
∏k+p
j=k+1(τ − θj), then the Krylov space generated

by v+
1 = ψ(A)v1 satisfies

Km(A,v+
1) = Span{q̂1, q̂2, . . . , q̂k,Aq̂j ,A

2q̂j , . . . ,A
pq̂j},

for any j = 1, 2, . . . , k. Thus polynomial restarting with exact shifts will
generate a new subspace that contains all of the possible choices in (4.5).

This property follows from the fact that Km(A,v+
1) = ψ(A)Km(A,v1),

together with the fact that a Ritz vector q̂j has the form

q̂j =
k∏

i=1

i6=j

(A− θiI)ψ(A)v1,

and thus

Aℓq̂j = Aℓ
k∏

i=1

i6=j

(A− θiI)v+
1 ∈ Km(A,v+

1), for ℓ = 1, 2, . . . , p.

Hence

Span{q̂1, q̂2, . . . , q̂k,Aq̂j ,A
2q̂j , . . . ,A

pq̂j} ⊂ Km(A,v+
1).

A minimal polynomial argument may then be used to establish the linear

Eigenvalue methods 533

independence of {q̂1, q̂2, . . . , q̂k,Aq̂j ,A
2q̂j , . . . ,A

pq̂j}, and thus a dimen-
sion argument establishes the desired equality. When wanted Ritz values
are not distinct, generalized eigenvectors enter into this discussion.

Exact shifts have proved to perform remarkably well in practice and have
been adopted as the shift selection of choice when no other information
is available. However, there are many other possibilities. For example,
if we knew of a region containing the wanted eigenvalues, we might be
able to construct filter shifts designed to assure that the filter polynomial
would ultimately be very small (in absolute value) over that region. If the
containment region were a line segment or an ellipse, we could construct
the Chebyshev points related to that region. Another distribution of filter
shifts that can be designed for very general containment regions are the Leja
points. These have been studied extensively in the literature and have been
applied very successfully in the context of an implicitly restarted Lanczos
method (IRLM) by Baglama, Calvetti and Reichel (1996). These points
figure prominently in the convergence analysis we give in Section 5.

4.4. Implicit restarting

A straightforward way to implement polynomial restarting is to explicitly
construct the starting vector v+

1 = ψ(A)v1 by applying ψ(A) through a
sequence of matrix-vector products. However, there is an alternative imple-
mentation that provides a more efficient and numerically stable formulation.
This approach, called implicit restarting, uses a sequence of implicitly shifted
QR steps to anm-step Arnoldi or Lanczos factorization to obtain a truncated
form of the implicitly shifted QR-iteration. Numerical difficulties and
storage problems normally associated with Arnoldi and Lanczos processes
are avoided. The algorithm is capable of computing a small number k of
eigenvalues with user-specified features such as largest real part or largest
magnitude using 2nk+O(k2) storage. The computed Schur basis vectors for
the desired k-dimensional eigenspace are numerically orthogonal to working
precision.

Implicit restarting enables the extraction of desired eigenvalues and vec-
tors from high-dimensional Krylov subspaces while avoiding the standard
storage and numerical difficulties. Desired eigen-information is continually
compressed into a fixed-size k-dimensional subspace through an implicitly
shifted QR mechanism. An Arnoldi factorization of length m = k + p,

AVm = VmHm + fme∗m, (4.6)

is compressed to a factorization of length k that retains the eigen-information
of interest.

QR steps are used to apply p linear polynomial factors A−µjI implicitly
to the starting vector v1. The first stage of this shift process results in

AV+
m = V+

mH+
m + fme∗mQ, (4.7)

534 D. C. Sorensen

where V+
m = VmQ, H+

m = Q∗HmQ, and Q = Q1Q2 · · ·Qp. Each Qj

is the orthogonal matrix associated with implicit application of the shift
µj = θk+j . Since each of the matrices Qj is Hessenberg, it turns out that

the first k − 1 entries of the vector e∗mQ are zero (i.e., e∗mQ = [σe
T

k , q̂
∗]).

Hence, the leading k columns in equation (4.7) remain in an Arnoldi relation
and provide an updated k-step Arnoldi factorization

AV+
k = V+

k H+
k + f+

k e∗k, (4.8)

with an updated residual of the form f+
k = V+

mek+1β̂k + fmσ. Using this
as a starting point, it is possible to apply p additional steps of the Arnoldi
process to return to the original m-step form.

Virtually any explicit polynomial restarting scheme can be applied with
implicit restarting, but considerable success has been obtained with exact
shifts. Exact shifts result in H+

k having the k wanted Ritz values as its
spectrum. As convergence takes place, the subdiagonals of Hk tend to zero
and the most desired eigenvalue approximations appear as eigenvalues of the
leading k × k block of R as a partial Schur decomposition of A. The basis
vectors Vk tend to numerically orthogonal Schur vectors.

The basic IRAM iteration is shown in Algorithm 3. The expansion and
contraction process of the IRAM iteration is visualized in Figure 4.

4.5. Convergence of IRAM

There is a fairly straightforward intuitive explanation of how this repeated
updating of the starting vector v1 through implicit restarting might lead to
convergence. If v1 is expressed as a linear combination of eigenvectors {qj}
of A, then

v1 =

n∑

j=1

qjγj ⇒ ψ(A)v1 =

n∑

j=1

qjψ(λj)γj .

Applying the same polynomial (i.e., using the same shifts) repeatedly
for ℓ iterations will result in the jth original expansion coefficient being
attenuated by a factor

(
ψ(λj)

ψ(λ1)

)ℓ
,

where the eigenvalues have been ordered according to decreasing values of
|ψ(λj)|. The leading k eigenvalues become dominant in this expansion and
the remaining eigenvalues become less and less significant as the iteration
proceeds. Hence, the starting vector v1 is forced into an invariant subspace
as desired. The adaptive choice of ψ provided with the exact shift mechanism
further enhances the isolation of the wanted components in this expansion.
Hence, the wanted eigenvalues are approximated ever better as the iteration

Eigenvalue methods 535

Compute an m = k + p step Arnoldi factorization
AVm = VmHm + fme∗m.

repeat until convergence,
Compute σ(Hm) and select p
shifts µ1, µ2, . . . , µp;
Q = Im;
for j = 1, 2, . . . , p,

Factor [Qj ,Rj] = qr(Hm − µjI);
Hm ← Q∗

jHmQj ;
Q← QQj ;

end

β̂k = Hm(k + 1, k); σk = Q(m, k);

fk ← vk+1β̂k + fmσk;
Vk ← VmQ(: , 1: k); Hk ← Hm(1 : k, 1: k);
Beginning with the k-step Arnoldi factorization

AVk = VkHk + fke
∗

k,
apply p additional steps of the Arnoldi process
to obtain a new m-step Arnoldi factorization

AVm = VmHm + fme∗m.
end

Algorithm 3. Implicitly restarted Arnoldi method (IRAM)

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Figure 4. Visualization of IRAM

536 D. C. Sorensen

Figure 5. Final filter polynomial from IRAM

proceeds. Unfortunately, making this heuristic argument precise has turned
out to be quite difficult. Some fairly sophisticated analysis is required to
understand convergence of these methods. In Section 5 we sketch such an
analysis for polynomial restarting.

Another way to look at this procedure is to consider the aggregate
polynomial

vfinal = Φ(A)v1,

where Φ(τ) is the product of all the polynomials that were applied during
the course of the computation. In Figure 5, the plot shows the surface of
log|Φ(τ)| for τ in a region of the complex plane containing the eigenvalues
of A (shown by +s). The circled eigenvalues are the five eigenvalues
of largest real part that were computed. The filter polynomial Φ was
automatically constructed, through the choice of filter shifts, to be small on
the unwanted portion of the spectrum and to enhance the wanted portion
(the five eigenvalues of largest real part).

We can also learn a great deal by considering a plot of the totality of all
the filter shifts in relation to the final converged eigenvalues. This is shown
in Figure 6 (a different example than shown in Figure 5). The plot shows all

Eigenvalue methods 537

−20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 6. Distribution of filter shifts in IRAM

of the filter shifts (the light dots) applied, and the converged eigenvalues as
the five darkest points to the right. The actual eigenvalues of A are shown
as dark +s.

It is worth noting that if m = n then fm = 0, and this iteration is
precisely the same as the implicitly shifted QR iteration. Even for m < n,
the first k columns of Vm and the Hessenberg submatrix Hm(1 : k, 1: k)
are mathematically equivalent to the matrices that would appear in the
full implicitly shifted QR iteration using the same shifts µj . In this sense,
the implicitly restarted Arnoldi method may be viewed as a truncation of
the implicitly shifted QR iteration. The fundamental difference is that the
standard implicitly shifted QR iteration selects shifts to drive subdiagonal
elements of Hn to zero from the bottom up, while the shift selection in the
implicitly restarted Arnoldi method is made to drive subdiagonal elements
of Hm to zero from the top down.

This implicit scheme costs p rather than the k+p matrix-vector products
the explicit scheme would require. Thus the exact shift strategy can
be viewed both as a means for damping unwanted components from the
starting vector and also for directly forcing the starting vector to be a linear
combination of wanted eigenvectors. See Sorensen (1992) for information
on the convergence of IRAM and Baglama et al. (1996) and Stathopoulos,
Saad and Wu (1998) for other possible shift strategies for Hermitian A. The
reader is referred to Lehoucq and Scott (1996) and Morgan (1996) for studies
comparing implicit restarting with other schemes.

538 D. C. Sorensen

4.6. Deflation schemes for IRAM

The performance of IRAM can be improved considerably with the intro-
duction of appropriate deflation schemes to isolate approximate invariant
subspaces associated with converged Ritz values. These deflation strategies
can make it possible to compute multiple or clustered eigenvalues with a
single-vector implicit restart method.

Since IRAM may be viewed as a truncation of the standard implicitly
shifted QR-iteration, it inherits a number of desirable properties. These
include some well-understood deflation rules that are extremely important
with respect to convergence and stability. These deflation rules are essential
for the QR-iteration to efficiently compute multiple or clustered eigenvalues.
These rules simply specify a numerically stable criterion for setting small
subdiagonal elements of H to zero. While these existing QR deflation rules
are applicable to IRAM, they are not the most effective schemes possible.
Here, we introduce additional deflation schemes that are better suited to
implicit restarting.

In the large-scale setting, it is highly desirable to provide schemes that
can deflate with user-specified relative error tolerances ǫD that are perhaps
considerably greater than working precision ǫM . Without this capability,
excessive and unnecessary computational effort is often required to detect
and deflate converged approximate eigenvalues. The ability to deflate at
relaxed tolerances provides an effective way to compute multiple or clustered
eigenvalues with a single-vector implicitly restarted Arnoldi method.

We shall introduce two forms of deflation. The first, a locking operation,
decouples converged approximate eigenvalues and associated invariant sub-
spaces from the active part of the IRAM iteration. The second, a purging

operation, removes unwanted but converged eigenpairs. Locking has the
effect of isolating an approximate eigenspace once it has converged to a
certain level of accuracy and then forcing subsequent Arnoldi vectors to
be orthogonal to the converged subspace. With this capability, additional
instances of a multiple eigenvalue can be computed to the same specified
accuracy without the expense of converging them to unnecessarily high
accuracy. Purging allows the deletion of converged but unwanted Ritz values
and vectors from the Krylov space when they are not purged naturally by
the restarting scheme. With the aid of these deflation schemes, convergence
of the IRAM iteration can be greatly improved. Computational effort is
also reduced. These notions and appropriate methods were developed in
Lehoucq (1995) and Lehoucq and Sorensen (1996). Here, we present a
slightly improved variant of those deflation schemes.

Small subdiagonal elements of H may occur during implicit restarting.
However, it is usually the case that there are converged Ritz values appearing
in the spectrum of H long before small subdiagonal elements appear.

Eigenvalue methods 539

This convergence is usually detected through observation of a small last
component in an eigenvector y of H.

It turns out that in the case of a small last component of y, there is
an orthogonal similarity transformation of H that will give an equivalent
Arnoldi factorization with a slightly perturbed H that does indeed have a
zero subdiagonal, and this is the basis of our deflation schemes.

Orthogonal deflating transformations

Our deflation schemes rely on the construction of a special orthogonal
transformation. As in Lehoucq (1995) and Lehoucq and Sorensen (1996),
the deflation is related to an eigenvector y associated with the Ritz value to
be deflated. In the following discussion, it is very important to note that the
eigenvector y in either the locking or purging need not be accurate. All that
is required for successful deflation schemes is that ‖Hy − yθ‖ ≤ ǫ

M
‖H‖ in

the case of locking, and that ‖y∗H− θy∗‖ ≤ ǫ
M
‖H‖ in the case of purging,

to obtain backward stable deflation rules.
The construction is based on a sequence of Givens transformations. If

y is a given vector of unit length, compute a sequence of plane rotations
G1,j , j = 2, . . . , n such that

y∗
j = y∗

j−1G1,j = (τj , 0, . . . , 0, ηj+1, . . . , ηn),

beginning with y1 := y and ending with yn = e1. Thus, the orthogonal
matrix Q = G1,2G1,3 · · ·G1,n satisfies y∗Q = e∗1. Recalling that each G1,j

is the identity matrix In with the (1, 1), (j, j) entries replaced with γj , γ̄j
and the (1, j), (j, 1) entries replaced with −σ̄j , σj , where |γj |2 + |σj |2 = 1,
it is easily seen that

Qe1 = y and e∗kQ = (η, τe∗k−1), (4.9)

with |η|2 + |τ |2 = 1.

Locking or purging a single eigenvalue

Now, we shall use the orthogonal transformations developed above to con-
struct stable and efficient transformations needed to implement locking and
purging. The simplest case to consider is the treatment of a single eigenvalue.
When working in complex arithmetic, this will suffice. Handling complex
conjugate eigenvalues of a real nonsymmetric matrix in real arithmetic is a
bit more complicated but essentially follows the same theme to deflate two
vectors at once.

Locking θ. The first instance to discuss is the locking of a single converged
Ritz value. Assume that

Hy = yθ, ‖y‖ = 1,

540 D. C. Sorensen

with e∗ky = η, where |η| ≤ ǫD‖H‖. Here, it is understood that ǫM ≤ ǫD < 1
is a specified relative accuracy tolerance between ǫM and 1.

If θ is ‘wanted’ then it is desirable to lock θ. However, in order to
accomplish this it will be necessary to arrange a transformation of the
current Arnoldi factorization to one with a small subdiagonal to isolate
θ. This may be accomplished by constructing a k × k orthogonal matrix
Q = Q(y) as above with properties (4.9).

Consider the matrix H+ = Q∗HQ. The first column of this matrix is

H+e1 = Q∗HQe1 = Q∗Hy = Q∗yθ = e1θ.

Thus H+ is of the form

H+ =

[
θ h∗

0 Ĥ

]
.

We may return the matrix to Hessenberg form using orthogonal similarity
transformations without destroying the desirable structure of the last row
of Q. One way to accomplish this is to apply a succession of orthogonal
transformations of the form

Ûj =




1 0 0
0 Uj 0
0 0 Ik−j


,

so that H+ ← Û∗
jHÛj is constructed to introduce zeros in positions

2, . . . , j − 1 of row j + 1 for j = k − 1, k − 2, . . . , 3. This is a standard
Householder reduction to Hessenberg form working from the bottom up. Of
course, the orthogonal matrix Q must be updated in the same way to give
Q← QÛj , j = k−1, k−2, . . . , 3. On completion, the kth row of Q remains
undisturbed from the original construction.

The end result of these transformations is

A[v1,V2] = [v1,V2]

[
θ h∗

0 H2

]
+ [fη, fτe∗k−1],

where [v1,V2] = VQ. Moreover, this relation may be rearranged to give

[A− fηv∗
1][v1,V2] = [v1,V2]

[
θ h∗

0 H2

]
+ fτe∗k,

to see that we have an exactly deflated Arnoldi factorization of a nearby
matrix Â = A− fηv∗

1 (remember, η is small).
Now, subsequent implicit restarting steps take place only in the last k− 1

columns, as if we had
AV2 = V2H2 + fτe∗k−1,

with all the subsequent orthogonal matrices and column deletions associated
with implicit restarting applied to h∗, and never disturbing the relation
Av1 = v1θ + fη. Therefore, if Q̂ represents a (k − 1) × (k − 1) orthogonal

Eigenvalue methods 541

matrix associated with an implicit restart, then

AV2Q̂ = (v1,V2Q̂)

(
h∗Q̂

Q̂∗H2Q̂

)
+ fτe∗k−1Q̂.

In subsequent Arnoldi steps, v1 participates in the orthogonalization
so that the selective orthogonalization recommended by Parlett and Scott
(Parlett and Scott 1979, Parlett 1980) is accomplished automatically.

Purging θ. If θ is ‘unwanted’ then we may wish to remove θ from the
spectrum of the projected matrix H. This purging process is required since
the implicit restart strategy using exact shifts will sometimes fail to purge
a converged unwanted Ritz value (Lehoucq and Sorensen 1996).

The purging process is quite analogous to the locking process just de-
scribed. However, in this case it is advantageous to use a left eigenvector to
obtain the deflation. Let y be a left eigenvector of H corresponding to θ,
that is,

y∗H = θy∗.

Just as before, we construct a (k × k) orthogonal matrix Q such that

y∗Q = e∗1, and e∗kQ = (η, 0, . . . , 0, τ),

where η = e∗ky and |τ |2 + |η|2 = 1.
Again, consider the matrix H+ = Q∗HQ. The first row of this matrix is

e∗1H+ = e∗1Q
∗HQe1 = y∗HQ = θy∗Q = θe∗1.

Thus H+ is of the form

H+ =

[
θ 0

h Ĥ

]
,

and thus

A[vk, V̂] = [vk, V̂]

[
θ 0

h Ĥ

]
+ f(η, τe∗k−1),

where [vk, V̂] = VQ. Now, simply delete the first column on both sides to
get

AV̂ = V̂Ĥ + fτe∗k−1.

We may return this to an Arnoldi factorization as before by constructing
an orthogonal Q̂ with e∗k−1Q̂ = e∗k−1 such that Q̂∗ĤQ̂ is upper Hessenberg.

In fact, we can use the structure of Q to show that Ĥ, surprisingly, must be
upper Hessenberg automatically. However, there are subtleties in achieving
an implementation that attains this numerically.

Recently, Stewart has introduced an implicit restarting method that may
well resolve the issue of locking and purging. This is presented in Stewart
(2001).

542 D. C. Sorensen

4.7. The Lanczos method

As previously mentioned, when A is Hermitian (A = A∗) then the projected
matrix H is tridiagonal and the Arnoldi process reduces to the Lanczos
method. Historically, the Lanczos process preceded the Arnoldi process.

In the Hermitian case, if we denote the subdiagonal elements of H

by β1, β2, . . . , βn−1 and the diagonal elements by α1, α2, . . . , αn, then the
relation

AVk = VkHk + fke
∗
k

gives

fk = vk+1βk

= Avk − vkαk − vk−1βk−1.

This famous three-term recurrence has been studied extensively since its
inception. The numerical difficulties are legendary, with the two main
issues being the numerical orthogonality of the sequence of basis vectors and
the almost certain occurrence of ‘spurious’ copies of converged eigenvalues
reappearing as eigenvalues of the projected matrix Hk.

The most favourable form of the recurrence, in the absence of any
additional attempt at achieving orthogonality, is displayed in Algorithm 4.
This organization amounts to the last two steps of a modified Gram–Schmidt
variant of the Arnoldi process. Mathematically, all of the other coefficients
that would ordinarily appear in the Arnoldi process are zero in the Hermitian
case and this condition is forced to obtain the Lanczos process.

Once the tridiagonal matrix Hm has been constructed, analysed and
found to possess k converged eigenvalues {θ1, θ2, . . . , θk}, with corresponding
eigenvectors Y = [y1,y2, . . . ,yk], we may construct the eigenvectors with
the recursion given in Algorithm 5.

This mechanism is quite attractive when the matrix-vector product w←
Av is relatively inexpensive. However, there are considerable numerical
difficulties to overcome. Cullum and Willoughby developed schemes for
analysing the projected matrix Hm and modifying it to get rid of the
spurious eigenvalue cases. Briefly, this analysis consists of deleting the first
row and column of H and then comparing the Ritz values of the new Ĥ

with those of the original H. Those that are the same are the spurious
ones. The heuristic idea is that convergence of the ‘good’ Ritz values is
triggered by significant components in the starting vector. A converged
Ritz vector is composed from basis vectors in the Krylov subspace, and
these basis vectors only contain (at least in exact arithmetic) components
of the converged Ritz vector if the starting vector has a nonzero component
in that direction. Since the starting vector is one of the orthogonal basis
vectors V for the Krylov subspace, deleting it from the basis should tend

Eigenvalue methods 543

v1 = v/‖v‖;
w = Av1;
α1 = v∗

1w;
f1 ← w − v1α1;
for j = 1, 2, 3, . . . ,m− 1,

βj = ‖fj‖;
vj+1 ← fj/βj ;
w← Avj+1 − vjβj ;
αj+1 = v∗

j+1w;
fj+1 ← w − vj+1αj+1;

end

Algorithm 4. The Lanczos process

X = v1Y(1, :);
w = Av1;
f1 ← w − v1α1;
for j = 1, 2, 3, . . . ,m− 1,

βj = ‖fj‖;
vj+1 ← fj/βj ;
X← X + vj+1Y(j + 1, :);
fj+1 ← Avj+1 − vj+1αj+1 − vjβj ;

end

Algorithm 5. Eigenvector recovery in the Lanczos process

to remove important components that triggered convergence. Deleting the
first row and column of H = V∗AV gives an orthogonal projection Ĥ of A

onto a subspace that is orthogonal to the starting vector. Consequently, if a
Ritz value persists as an eigenvalue of Ĥ, it must be spurious and therefore
is the result of rounding errors.

Parlett and Reid (1981) suggested another mechanism to detect con-
vergence of Ritz values, by constructing intervals that must contain an
eigenvalue. The advantage of this approach is that it also identifies true
eigenvalues that are discovered as a result of rounding errors (for instance

544 D. C. Sorensen

when the starting vector was unintentionally orthogonal to the correspond-
ing eigenvector).

Even with this convergence test, there is no assurance of numerical ortho-
gonality of the converged eigenvectors. Parlett and Scott advocate a selected
orthogonalization procedure (Parlett and Scott 1979) that orthogonalizes
against converged Ritz vectors as they appear. An excellent account of the
complete process is given in Parlett (1980). Grimes et al. (1994) advocate
always using shift-invert, so that the Lanczos sequence is relatively short,
and the separation of the transformed eigenvalues aids in the orthogonality,
so that a selective orthogonalization scheme is quite successful.

4.8. Harmonic Ritz values and vectors

As we have seen, Ritz values usually approximate the extremal values of the
spectrum well, but give poor approximations to interior eigenvalues. One
attempt to better approximate interior eigenvalues has been the introduction
of harmonic Ritz values. These were formally introduced in Paige, Parlett
and van der Vorst (1995) for symmetric matrices, but have previously been
used for analysis and computation in Morgan (1991) and Freund (1992). In
particular, harmonic Ritz values have been proposed for restarting strategies
when interior eigenvalues are sought.

There are various ways to introduce this notion. A fairly intuitive idea is
to consider Rayleigh quotients of A−1 of the form

θ =
w∗A−1w

w∗w
with w ∈ S,

where S is a well-chosen subspace. A convenient choice is S = AKk(A,v).
If w ∈ S then w = AVy for some y, and

θ =
w∗A−1w

w∗w

=
y∗V∗A∗A−1AVy

y∗V∗A∗AVy

=
y∗V∗A∗Vy

y∗V∗A∗AVy

=
y∗H∗y

y∗[VH + fe∗k]
∗[VH + fe∗k]y

=
y∗H∗y

y∗(H∗H + β2eke
∗
k)y

,

where β = ‖f‖. Thus θ is a generalized Rayleigh quotient for the matrix
pencil (H∗,H∗H + β2eke

∗
k). The harmonic Ritz values are defined as the

generalized eigenvalues associated with this pencil. Since θ is related to
eigenvalues of A−1, it is natural to define the harmonic Ritz values µ to be

Eigenvalue methods 545

the reciprocals of the critical points θ of this Rayleigh quotient. Thus the
harmonic Ritz values are the eigenvalues

(H∗H + β2eke
∗
k)y = H∗yµ,

and the corresponding harmonic Ritz vectors are

x = AVy = VHy + f(e∗ky).

When H is nonsingular, this simplifies to

(H + ge∗k)y = yµ with g = β2H−∗ek.

When A is Hermitian and indefinite, with λ− the largest negative eigen-
value and λ+ the smallest positive eigenvalue of A, then

µ− ≤ λ− < 0 and 0 < λ+ ≤ µ+,

with µ− the largest negative and µ+ the smallest positive harmonic Ritz
values. In other words, the largest interval containing 0 but no eigenvalues
of A is also devoid of any harmonic Ritz values.

The harmonic Ritz values have some interesting properties. For symmetric
matrices, the Ritz values converge monotonically to exterior eigenvalues of
A. In contrast, the harmonic Ritz values converge monotonically, albeit
often at a slow rate, to the interior eigenvalues of A closest to the origin. This
property is intuitively attractive, but has not really resulted in an effective
way to compute interior eigenvalues from a Krylov subspace generated by A.
We need somehow to generate a subspace that really does contain vectors
that can approximate eigenvectors associated with interior eigenvalues.
Morgan (1991) has suggested harmonic Ritz vectors for restarts, and the
idea has also been incorporated in the Jacobi–Davidson algorithm (Sleijpen
and van der Vorst 1996). The latter method does introduce vectors into
the subspace that approximate inverse iteration directions, and hence the
harmonic Ritz vectors have a better chance of being effective in that setting.

5. Convergence of polynomial restart methods

For nonsymmetric problems, convergence of Krylov projection methods has
been studied extensively, but the general case has been elusive. Saad (1980)
developed a bound for matrices with simple eigenvalues for the gap between
a single eigenvector and the Krylov subspace (gap will be defined below).
This result was generalized in Jia (1995) to include defective matrices, but
the bounds explicitly involve the Jordan canonical form and derivatives of
approximating polynomials. Simoncini (1996) analyses convergence of a
block Arnoldi method for defective matrices using pseudospectra. Lehoucq
(2001) relates IRAM to subspace iteration to analyse convergence to an in-
variant subspace. Calvetti, Reichel and Sorensen (1994) introduce concepts

546 D. C. Sorensen

from potential theory to analyse IRLM convergence to a single eigenvector
for Hermitian matrices.

In the nonsymmetric case, the possibility of nonnormality complicates the
analysis considerably. The possibility of derogatory matrices (an eigenvalue
with geometric multiplicity greater than one) may even render certain
invariant subspaces unreachable. These concepts are introduced in Beattie,
Embree and Rossi (2001). They employ various ideas from functional
analysis, pseudospectra and potential theory. Their analysis focuses on
convergence in gap (a generalized notion of angle) of a (restarted) Krylov
space to a desired invariant subspace of A, and they are able to treat
convergence in full generality.

In this section, we give a modified version of their results. Our purpose
here is to lay out the main ideas as simply as possible while retaining the
general theme and content of those excellent results. In doing so, we sacrifice
some rigour and our convergence estimates are not as refined. We strongly
recommend that the interested reader consult that reference for a thorough
and insightful treatment of the convergence issues.

Before launching into this discussion, some motivation is in order. If the
matrix A is normal, then its eigensystem is perfectly conditioned (insensitive
to perturbations). In this case, it makes perfect sense to phrase convergence
analysis in terms of eigenvalues. However, even in this case, when there
are multiple eigenvalues, it makes more sense numerically to phrase such
results in terms of convergence to invariant subspaces. In the nonsymmetric
case, there is a possibility of a nontrivial Jordan form. If, for example, A

has a Jordan form with a block of order ℓ > 1, then certain eigenvalues
of A + E are likely to be perturbed by as much as ‖E‖(1/ℓ) from the
eigenvalues of A. The best we can hope for in a numerical algorithm is to
compute the exact eigensystem of a slightly perturbed matrix of this form
with ‖E‖ = ‖A‖O(ǫ

M
) (machine precision). Convergence results based on

damping out specific eigenvalues (the unwanted set) in the presence of such
perturbations are numerically meaningless. We must, instead, phrase such
results in terms of convergence of invariant subspaces and also provide a
mechanism to encompass such perturbations. This perturbation theory for
nonnormal matrices is perhaps best described in Trefethen (1992, 1999).
However, there are several important related papers. For really fascinating
computational studies on this topic we heartily recommend the software
MATLAB Pseudospectra GUI, 2000-2001 by T. G. Wright, available at
www.comlab.ox.uk/pseudospectra/pasgui. Pseudospectra will play a
fundamental role in the following discussion.

The following is an attempt to provide a completely general convergence
analysis based on the theory presented in Beattie et al. (2001). The devel-
opment here is, admittedly, not entirely rigorous. The intent is to sketch
the main ideas in a comprehensive way that can be readily understood.

Eigenvalue methods 547

5.1. Some preliminaries

We are naturally concerned with the Krylov subspace generated by a given
starting vector. Note that, for any starting vector v1, there is a least positive
integer k such that

Kk(A,v1) = K(A,v1) = Span{v1,Av1,A
2v1, . . .}.

Moreover, k is the degree of the minimal polynomial of A with respect to
v1. This is the monic polynomial φ of least degree such that φ(A)v1 = 0.
From this property, it is straightforward to see that

AK = KAk, with K = [v1,Av1, . . . ,A
k−1v1],

where Ak = J + ge∗k, where J is a Jordan matrix of order k with ones on

the first subdiagonal and zeros elsewhere, and where g
T

= (γ0, γ1, . . . , γk−1)
with φ(τ) = τk − γk−1τ

k−1 − · · · − γ1τ − γ0. This implies that Kk(A,v1)
is an invariant subspace with respect to A and that Kj(A,v1) ⊂ Kk(A,v1)
for all positive integers j.

Since Ak is non-derogatory (every eigenvalue of Ak has geometric multi-
plicity 1), this observation shows that it is impossible to capture more than
a single Jordan block associated with a given eigenvalue. Indeed, if A is
derogatory, then it is technically impossible to compute the entire invariant
subspace corresponding to an eigenvalue of geometric multiplicity greater
than one, from such a Krylov space. We would necessarily need to employ
deflation and restart techniques in this case. In practice, round-off error
usually blurs this situation.

To develop an understanding of convergence, a minimal amount of ma-
chinery needs to be established. Let λj , 1 ≤ j ≤ N be the distinct
eigenvalues of A and let nj be the algebraic multiplicity of λj . From a
Schur decomposition A = QRQ∗ (recall that the eigenvalues λj may appear
in any specified order on the diagonal of R), we can construct a spectral
decomposition

A = XR̂Y∗, with Y∗X = XY∗ = I,

where R̂ is block diagonal with upper triangular blocks Rj = λjInj
+ Uj ,

and
X = [X1,X2, . . . ,XN], Y = [Y1,Y2, . . . ,YN].

This construction is detailed in Golub and Van Loan (1996).
The property Y∗X = XY∗ = I implies that each Pj := XjY

∗
j is a

projector with the following properties:

APj = PjA = XjRjY
∗
j ,

ASj ⊂ Sj := Range(Pj),

I = P1 + P2 + · · ·+ PN ,

Cn = ⊕Nj=1Sj .

548 D. C. Sorensen

With polynomial restart techniques, we attempt to modify the starting
vector v1 in a systematic way to force the invariant subspace K := Kk(A,v1)
ever closer to a desired invariant subspace Xg corresponding to wanted
eigenvalues λj , 1 ≤ j ≤ L. In keeping with the notation of Beattie
et al. (2001) we shall denote this selected set as ‘good’ eigenvalues and the
remaining ones will be called ‘bad’ eigenvalues. It is important to note that
there is no assumption about algebraic or geometric multiplicity of these
eigenvalues.

Naturally, we are interested in some measure of nearness of K to Xg. One
such device is the gap between subspaces. The quantity

δ(W,V) := sup
w∈W

inf
v∈V

‖w − v‖
‖w‖

is called the containment gap between subspaces W and V. We can show
that δ(W,V) = sin(θ), where θ is the largest canonical angle between a

closest subspace V̂ of V having the same dimension as W. If W and V are
both one-dimensional, then θ is the angle between unit vectors v ∈ V and
w ∈ W. We shall use this notion to describe the relation between a Krylov
subspace and a desired invariant subspace Xg corresponding to good (or
wanted) eigenvalues of A.

The following lemma will provide a decomposition of K(A,v1) associated
with a given starting vector v1. This lemma provides a fundamental step
towards understanding convergence in gap between Xg and K(A,v1).

Lemma 5.1.

K = ⊕Nj=1Kkj (A,Pjv1),

where kj ≤ nj is the degree of the minimal polynomial of A with respect to
Pjv1.

Proof. Since Pjv1 is in the invariant subspace Sj , we have Kℓ(A,Pjv1) ⊂
Sj for all ℓ. Given any x = ψ(A)v1 ∈ K, we have

x = ψ(A)

(
N∑

j=1

Pjv1

)
=

N∑

j=1

ψ(A)Pjv1 ∈ ⊕Nj=1Kkj (A,Pjv1)

(this is a direct sum since Si∩Sj = {0}, i 6= j). To demonstrate the opposite

containment, let x ∈ ⊕Nj=1Kkj (A,Pjv1). Then x =
∑N

j=1 ψj(A)Pjv1 with

deg(ψj) < kj . Let φ be the unique polynomial of degree k̂ < k1+k2+· · ·+kN
that interpolates the specified Hermite data (λj , ψ

(ℓ)
j (λj)) for 0 ≤ ℓ ≤ kj − 1

and for 1 ≤ j ≤ N . At each j, after expanding φ in a Taylor series about λj ,

Eigenvalue methods 549

we see that

φ(A)Pjv1 = Xjφ(Rj)Y
∗
jv1 = Xj

kj−1∑

ℓ=0

φ
(ℓ)
j (λj)

ℓ!
(Rj − λjInj

)ℓY∗
jv1,

since Xj(Rj − λjInj
)ℓY∗

jv1 = (A− λjI)ℓPjv1 = 0, for ℓ ≥ kj .
Thus, ψj(A)Pjv1 = φ(A)Pjv1, since the Hermite interpolation condi-

tions imply that the leading kj terms of the Taylor expansion of ψj and φ
about λj will agree. Hence

x =

N∑

j=1

ψj(A)Pjv1 =

N∑

j=1

φ(A)Pjv1 = φ(A)

(
N∑

j=1

Pjv1

)
∈ K. �

We define Pg :=
∑L

j=1 Pj and Pb :=
∑N

j=L+1 Pj , and we use the notation
Ωg and Ωb to denote two open sets containing the good and bad eigenvalues
respectively. We assume the closures of these regions are two disjoint sets
with the appropriate connectedness and regularity of boundaries to make
all of the contour integrals appearing below well defined. (Note: in those
integrals, the factor 1/2πi has been absorbed into the dζ term.)

With polynomial restart techniques, we attempt to modify the starting
vector v1 in a systematic way to force the invariant subspace Kk(A,v1)
ever closer to a desired invariant subspace Xg corresponding to the desired
eigenvalues λj , 1 ≤ j ≤ L. From the spectral decomposition, we know that

Xg = ⊕Lj=1Sj = Range(Pg),

where Sj = Range(Pj). We shall define the complementary space Xb :=
Range(Pb). From Lemma 5.1 we have

K(A,v1) = Ug ⊕ Ub,
where Ug := ⊕Lj=1Kkj (A,Pjv1) and Ub := ⊕Nj=L+1Kkj (A,Pjv1).

The questions we hope to answer are:

What is the gap δ(Xg,K(A,v1)?

What is the gap δ(Xg,K(A, v̂1) with v̂1 = Φ(A)v1?

The following discussion attempts to answer these questions.

Definition. Given a starting vector v1 and a selection of ‘good’ eigenvalues
{λj : 1 ≤ j ≤ L} with corresponding invariant subspace Xg, we define the
maximal reachable set Umax to be

Umax := K(A,v1) ∩ Xg.
It is easily seen that Umax is invariant with respect to A and the following

lemma will characterize this invariant subspace precisely.

550 D. C. Sorensen

Lemma 5.2. Given a starting vector v1 and a selection of ‘good’ eigen-
values {λj : 1 ≤ j ≤ L}, the maximal reachable set Umax is

Umax = ⊕Lj=1Kkj (A,Pjv1),

and therefore

Umax = Ug.
Proof. The proof is immediate from the characterization of K(A,v1) and
the fact that Kℓ(A,Pjv1) ⊂ Sj for all ℓ. �

Unfortunately, there are situations where it is impossible to produce a
Krylov space that contains a good approximating subspace to all of Xg.
Note that Ug ⊂ Xg, and that the only possibility for this containment to be
proper is if kj < nj for some 1 ≤ j ≤ L. That is to say, at least one good
eigenvalue must be derogatory. The following lemma establishes that it is
impossible to converge to all of Xg whenever there is a derogatory eigenvalue
amongst the good eigenvalues.

Lemma 5.3. Suppose Ug ⊂ Xg is a proper subset of Xg. Then

δ(Xg,K(A,v1)) ≥
1

‖Pg‖
.

Proof. Since Ug is a proper subset of Xg, there is a z ∈ Xg such that ‖z‖ = 1
and z ∈ U⊥

g . Thus, for any vg ∈ Ug we must have

‖vg − z‖2 = ‖vg‖2 + ‖z‖2 ≥ ‖z‖2 = 1.

Now, since any v ∈ K := K(A,v1) can be written uniquely as v = vg + vb
with vg ∈ Ug and vb ∈ Ub, we have

δ(Xg,K(A,v1)) = max
u∈Xg

min
v∈K

‖v − u‖
‖u‖ ≥ min

v∈K

‖v − z‖
‖z‖

≥ min
vg∈Ug
vb∈Ub

‖vg + vb − z‖
‖z‖ ≥ min

vg∈Ug
vb∈Ub

‖(vg − z) + vb‖
‖vg − z‖

≥ min
y∈Xg
vb∈Xb

‖vb − y‖
‖y‖ = min

y∈Xg
vb∈Xb

‖vb − y‖
‖Pg(vb − y)‖

≥ min
x

‖x‖
‖Pgx‖

=
1

‖Pg‖
. �

In this lemma, we could just as well have replaced Xg with any subspace U
of Xg that properly contains Ug. This justifies calling Ug the maximal reach-
able subspace. Moreover, since K(A,Φ(A)v1) is a subspace of K(A,v1),
the result also applies to all possible subspaces obtained by polynomial
restarting.

Eigenvalue methods 551

The best we can hope for is to produce a Krylov space that contains an
approximation to Ug. Of course, when the dimension is sufficiently large, Ug
will be captured exactly, since Ug ⊂ K(A,v1). We are interested in cases
where the dimension of the Krylov space is reasonably small.

We begin with a discussion of the distance of a Krylov space of dimension
ℓ from Ug, and then introduce the consequences for restarting.

Lemma 5.4. Let ℓ ≥ m = dim{Ug}. Then

δ(Ug,Kℓ(A,v1)) ≤ max
ψ

min
φ

‖φ(A)Pbv1‖
‖ψ(A)Pgv1‖

such that φ(A)Pgv1 = ψ(A)Pgv1 and deg(φ) < ℓ, deg(ψ) < m.

Proof. Since Ug = ⊕Lj=1Kkj (A,Pjv1), x ∈ Ug implies

x =
L∑

j=1

ψkj (A)Pjv1 = ψ(A)Pgv1,

where ψ is the unique polynomial of degree less than m that interpolates
the Hermite data defining ψkj , 1 ≤ j ≤ L. Also, v ∈ Kℓ(A,v1) implies
v = φ(A)v1 with deg(φ) < ℓ. Thus

δ(Ug,Kℓ(A,v1)) = max
ψ

min
φ

‖φ(A)v1 − ψ(A)Pgv1‖
‖ψ(A)Pgv1‖

= max
ψ

min
φ

‖[φ(A)− ψ(A)]Pgv1 + φ(A)Pbv1‖
‖ψ(A)Pgv1‖

≤ max
ψ

min
φ

‖φ(A)Pbv1‖
‖ψ(A)Pgv1‖

,

where the final inequality is obtained by restricting φ to satisfy the Hermite
interpolation data defining ψ on λj for 1 ≤ j ≤ L. �

We wish to refine this estimate into a more quantitative one. Recall m =
dim{Ug} =

∑L
j=1 kj and ℓ ≥ m. Define α(τ) to be the minimal polynomial of

A with respect to Pgv1. It is straightforward to show α(τ) =
∏L
j=1(τ−λj)kj .

Moreover, any polynomial φ of degree ℓ−1 ≥ m−1 satisfying the constraint
of Lemma 5.4 must be of the form

φ(τ) = ψ(τ) + φ̂(τ)α(τ).

Intuitively, this means that the matrix φ(A)−ψ(A) must annihilate Ug. We
have the following result.

Corollary 5.5.

δ(Ug,Kℓ(A,v1)) ≤ max
‖ψ(A)Pgv1‖=1

min
φ̂
‖[ψ(A) + φ̂(A)α(A)]Pbv1‖.

552 D. C. Sorensen

Thus, our gap estimate amounts to a question of how well a polynomial

φ̂ of degree ℓ −m can approximate the rational function ψ(τ)
α(τ) over certain

regions of the complex plane and, in particular, over the region Ωb.
We can easily verify

‖[ψ(A) + φ̂(A)α(A)]Pbv1‖ =
∥∥∥
∮

∂Ωb

[ψ(ζ) + φ̂(ζ)α(ζ)](ζI−A)−1Pbv1 dζ
∥∥∥,

where (as specified above) Ωb includes the bad eigenvalues and excludes
the good ones (with sufficient regularity conditions on connectedness and
smoothness of the boundary).

The previous discussion gives a qualitative idea of how the bounds will
be obtained, but does not really lead to a concrete bound since ψ may be
arbitrarily large.

5.2. Bounding ‖ψ(A)Pgv1‖ from below

We first consider the case that there is just one wanted eigenvalue λ1 and
that α(τ) = (τ−λ1)

k1 is the minimal polynomial of A with respect to Pgv1.
We may conclude that ‖(A − λ1I)

jPgv1‖ > 0 for 0 ≤ j < k1. Given ψ of
degree less than k1, set

ψ(τ) = ψ̂(τ)(τ − λ1)
j , (j < k1),

where we assume that ψ̂(λ1) = 1 since the numerator and denominator
in Lemma 5.4 may be simultaneously scaled by the same nonzero constant.
Now, let Λǫ = {ζ ∈ C : ‖(ζI−A)−1‖ ≥ 1

ǫ}. The set Λǫ is called the ǫ-pseudo-
spectrum of A (Trefethen 1992, 1999). This is one of several equivalent
descriptions. The boundaries of this family of sets are level curves of the
function ‖(ζI−A)−1‖ and these are called lemniscates. Let ǫ be sufficiently
small that there is a connected component of Λǫ denoted by Ωg that contains
λ1 and no other eigenvalue of A. Then ‖(ζI − A)−1‖ = 1/ǫ on ∂Ωg and

since ψ̂(λ1) = 1, we may take ǫ sufficiently small to ensure |ψ̂(ζ)| > 1/2 on
∂Ωg. Then

‖(A− λ1I)
jPgv1‖ =

∥∥∥
(∮

∂Ωg

1

ψ̂(ζ)
(ζI−A)−1 dζ

)
ψ̂(A)Pg(A− λ1I)

jPgv1

∥∥∥

≤
∥∥∥
∮

∂Ωg

1

ψ̂(ζ)
(ζI−A)−1 dζ

∥∥∥‖ψ̂(A)(A− λ1I)
jPgv1‖.

Thus,
‖(A− λ1I)

jPgv1‖
‖ψ(A)Pgv1‖

≤
(

max
ξ∈∂Ωg

1

|ψ̂(ξ)|

)∮

∂Ωg

‖(ζI−A)−1‖|dζ|

≤ Lg
πǫ

=: C1,

where Lg is the length of the boundary of Ωg.

Eigenvalue methods 553

With a little more work, this argument may be extended to L eigenvalues
with ψ(τ) = ψ̂(τ)α̂(τ) where α̂(τ) =

∏L
j=1(τ − λj)

ℓj with ℓj < kj . In
this case Ωg is the union of the disjoint ǫ-lemniscates enclosing the good

eigenvalues, and ψ(ζ) = ψ̂(ζ)α̂(ζ), where ψ̂ has been normalized to have
absolute value greater than or equal to one at all of the good eigenvalues.
As before, we assume that ǫ is sufficiently small to ensure that |ψ̂(ζ)| > 1/2
on ∂Ωg. Then, the bound becomes

‖α̂(A)Pgv1‖
‖ψ(A)Pgv1‖

≤ Lg
πǫ

=: C1.

5.3. Bounding ‖φ(A)Pbv1‖ from above

We impose the restriction φ(τ) = ψ(τ) + φ̂(τ)α(τ) and consider

φ(A)Pbv1 = [ψ(A) + φ̂(A)α(A)]Pbv1

=

(∮

∂Ωb

[
ψ(ζ)

α(ζ)
+ φ̂(ζ)

]
(ζI−A)−1 dζ

)
α(A)Pbv1,

which is valid since ψ(ζ)
α(ζ) is analytic on Ωb. Hence,

‖φ(A)Pbv1‖ ≤
∥∥∥
∮

∂Ωb

[
ψ(ζ)

α(ζ)
+ φ̂(ζ)

]
(ζI−A)−1 dζ

∥∥∥‖α(A)Pbv1‖

≤ max
ζ∈∂Ωb

∣∣∣
ψ(ζ)

α(ζ)
+ φ̂(ζ)

∣∣∣
∮

∂Ωb

‖(ζI−A)−1‖|dζ|‖α(A)Pbv1‖.

5.4. Gap estimates for polynomial restarting

We now consider the possibilities for achieving convergence in gap through
polynomial restarting. This will be analysed by revising the previous
estimates when we replace v1 with v̂1 = Φ(A)v1, where Φ is the aggregate
restart polynomial. We shall assume that all of the roots of Φ are in C Ωb.
In this case we have

δ(Ug,Kℓ(A, v̂1)) = max
ψ

min
φ

‖φ(A)Φ(A)v1 − ψ(A)Pgv1‖
‖ψ(A)Pgv1‖

= max
ψ

min
φ

‖[φ(A)Φ(A)− ψ(A)]Pgv1 + φ(A)Φ(A)Pbv1‖
‖ψ(A)Pgv1‖

≤ max
ψ

min
φ

‖φ(A)Φ(A)Pbv1‖
‖ψ(A)Pgv1‖

,

if φ · Φ is restricted to satisfy the Hermite interpolation data defining ψ on
λj for 1 ≤ j ≤ L.

Motivated by the arguments above, we put

φ(τ)Φ(τ) = ψ(τ) + Ψ(τ)α(τ).

554 D. C. Sorensen

This is accomplished by requiring φ to be specified so that φ ·Φ does indeed
satisfy the Hermite interpolation data defining ψ on λj for 1 ≤ j ≤ L. (This
is possible since Φ has no zeros in Ωg.)

Once we have φ defined, observe that Φ(τj) = 0 will imply that

Ψ(τj) = −ψ(τj)

α(τj)
.

Hence, Ψ interpolates −ψ
α at each root τj of Φ. (This is also true at the

roots of φ, but we have no control over the placement of those.) Note: this
interpolation property is automatic and nothing need be done to enforce it.

Again, converting to integral form gives

φ(A)Φ(A)Pbv1 = [ψ(A) + Ψ(A)α(A)]Pbv1

=

(∮

∂Ωb

[
ψ(ζ)

α(ζ)
+ Ψ(ζ)

]
(ζI−A)−1 dζ

)
α(A)Pbv1,

and this allows us to obtain the estimate

‖φ(A)Φ(A)Pbv1‖

≤
∥∥∥
∮

∂Ωb

[
ψ(ζ)

α(ζ)
+ Ψ(ζ)

]
(ζI−A)−1 dζ

∥∥∥‖α(A)Pbv1‖

≤ max
ζ∈∂Ωb

∣∣∣
ψ(ζ)

α(ζ)
+ Ψ(ζ)

∣∣∣
∮

∂Ωb

‖(ζI−A)−1‖|dζ|‖α(A)Pbv1‖.

If we assume Ωg∪Ωb consists of the ǫ-pseudospectrum of A with ǫ sufficiently
small that the closures of these sets do not intersect, then ‖(ζI−A)−1‖ = 1

ǫ
for ζ ∈ ∂Ωb, and we obtain

‖φ(A)Φ(A)Pbv1‖ ≤ max
ζ∈∂Ωb

∣∣∣
ψ(ζ)

α(ζ)
+ Ψ(ζ)

∣∣∣
Lb
2πǫ
‖α(A)Pbv1‖,

where Lb is the length of the boundary of Ωb.
Since we are free to choose the roots of Φ, we should be able to make

this estimate arbitrarily and uniformly small. The key to this will be the
selection of points that have desirable asymptotic approximation properties
with respect to interpolation of a given rational function on Ωb at an
increasing number of points. Leja points (and also Fejér or Fekete points)
are known to have such properties but they are expensive to compute. A
more attractive option is the use of so-called fast Leja points, introduced in
Baglama, Calvetti and Reichel (1998). Fast Leja points give almost the same
interpolation behaviour as Leja points but they are efficiently computed (as
shown in Baglama et al. (1998)). The construction amounts to a recursively
defined distribution of the points on ∂Ωb in a way that is nearly optimal
with respect to asymptotic interpolation properties. There are several
additional properties that make these points very attractive computationally
(see Baglama et al. (1998)).

Eigenvalue methods 555

There is no asymptotic rate of convergence available for fast Leja points,
but there is one for Leja points that does ensure a linear rate of convergence
for our application. Let us suppose for the moment that ψ is a fixed
polynomial of degree ℓ− 1 and α is as specified above. The following result
may be found in Gaier (1987) and in related papers (Reichel 1990, Fischer
and Reichel 1989).

Theorem 5.6. Assume that ∂Ωb is a Jordan curve. Let G(ω) be the
conformal mapping from the exterior of the unit disk to the exterior of Ωb,
such that G(∞) = ∞ and G′(∞) > 0 (guaranteed to exist by the Riemann

mapping theorem). We want to approximate f(ζ) = ψ(ζ)
α(ζ) on Ωb. Since α

has all zeros outside Ωb, there is a circle with radius ρ > 1 and centre at the
origin, such that its image C under G goes through a zero of α and there
is no zero of α in the interior of the curve C. Let q

M
be the polynomial of

degree < M that interpolates f at M Leja (Fejér or Fekete) points on the
boundary of Ωb. Then

lim sup
M→∞

max
ζ∈Ωb

|f(ζ)− q
M

(ζ)| 1

M =
1

ρ
.

Thus we expect a linear rate of convergence with ratio ρ−1. If we apply
p shifts at a time the convergence factor should be ρ−p. The convergence
is, of course, faster for larger ρ: i.e., as the distance of the zeros of α
from Ωb increases, so does ρ, and the convergence is correspondingly faster.
Recalling that the zeros of α are the desired eigenvalues, this confirms and
makes precise the intuitive notion that convergence should be faster when
the wanted eigenvalues are well separated from the rest of the spectrum.

The final convergence result will be of the form

δ(Ug,Kℓ(A, v̂1)) ≤ max
ψ

min
φ

‖φ(A)Φ(A)Pbv1‖
‖ψ(A)Pgv1‖

≤
(

1

ρ

)M
C0C1C2 max

α̂

‖α(A)Pbv1‖
‖α̂(A)Pgv1‖

,

where C1 =
Lg

πǫ , C2 = Lb

2πǫ , and where α̂(τ) =
∏L
j=1(τ − λj)ℓj with ℓj < kj .

The positive constant C0 is associated with converting the lim-sup statement
to a convergence rate. The integer M = deg(Φ) = νp if there have been ν
restarts of degree p.

These terms have very natural interpretations. In particular, ρ is determ-
ined by the distance of the good eigenvalues λj , 1 ≤ j ≤ L from the set
Ωb enclosing the bad eigenvalues. The constants C1 and C2 are related to
the nearness to nonnormality through the behaviour of the ǫ-pseudospectra.

Finally, the ratio ‖α(A)Pbv1‖
‖α̂(A)Pgv1‖

reflects the influence of bias in the starting

vector towards Ug. A pleasing consequence of this term is that, whenever
v1 ∈ Ug, then there is termination as soon as ℓ ≥ m in exact arithmetic.

556 D. C. Sorensen

Certain lemniscates of the ǫ-pseudospectra will form the boundary of Ωb,
and hence (unless they just touch) this boundary will be a union of Jordan
curves. In certain cases, we can obtain concrete estimates by replacing Ωb

with another set that encloses all of the bad eigenvalues, and with a positive
distance from Ωg. If this new set can be constructed so that the integrals can
be calculated or estimated, then actual convergence rates follow. In practice,
it is unusual to have advanced knowledge of such a set. In the symmetric
case, such sets are ǫ-balls centred at the eigenvalues, and this leads to
containment intervals on the real line. There is a method for constructing
Leja points for an adaptively defined containment interval. This has been
quite successful, as demonstrated in Baglama et al. (1996). Exact shifts
tend to discover such regions adaptively. As we have seen in prior examples,
they distribute themselves near the boundary of the adaptively discovered
containment region. This is one heuristic reason why exact shifts seem
to be successful in many cases. See Beattie et al. (2001) for a convincing
computational example of this.

6. Subspace iteration methods

There is another generalization of the power method that is perhaps more
straightforward than Krylov subspace projection. This is the generalized
power method or subspace iteration. It treats a block of vectors simultan-
eously in a direct analogy to the power method. In Algorithm 6 a shift-invert
variant of this method is described.

Factor VR = W (with W ∈ C
n×k arbitrary);

Set H = 0;
while (‖AV −VH‖ > tol‖H‖),

µ = Select shift(H);
Solve (A− µI)W = V;
Factor [V+,R] = qr(W);
H = V∗

+VR−1 + µI;
V← V+;

end

Algorithm 6. Generalized shifted inverse power method

Noting that H = V∗AV in Algorithm 6, it is evident that the Ritz pairs
(x, θ) may be obtained from the eigensystem of H just as in the Krylov
setting. However, in this case the subspace S = Range(V) will be dominated
by eigenvector directions corresponding to the eigenvalues nearest to the

Eigenvalue methods 557

selected shifts µj . The stopping rule can be modified so that additional
matrix-vector products to obtain AV are not explicitly required. Also, in
practice, it will most likely be more reliable to compute the final value of H

(after convergence) by computing V∗(AV) directly.
Typically a single shift µ is selected and a single sparse direct factorization

of A− µI is computed initially and re-used to solve the systems

(A− µI)W = V

repeatedly as needed. In this case, it is easily seen that the result on
convergence is a partial Schur decomposition,

AV = V(R−1 + µI).

When k = n this iteration becomes the well-known and very important
shifted QR iteration. To see this, suppose an initial orthogonal similarity
transformation of A to upper Hessenberg form has been made so that

AV = VH with V∗V = I, H upper Hessenberg.

If H = QR is the QR factorization of H, then W = (VQ)R is the QR
factorization of W = AV. Moreover,

(A− µI)(VQ) = (VQ)(RQ),

AV+ = V+H+ with V∗
+V+ = I, H+ = RQ + µI.

Of course, the amazing thing is that H+ remains upper Hessenberg if H

is originally upper Hessenberg. Moreover, the QR factorization of H by
Givens’ method and the associated updating V+ = VQ requires O(n2)
flops rather than O(n3) for a dense QR factorization.

The important observation to make with this iteration is that the con-
struction of the subspace is divorced from the construction of Ritz vectors.
Therefore, the system (A − µI)W = V could just as well be solved
(approximately) with an iterative method. The projected matrix H would
then be obtained directly by forming H← V∗

+AV+. The Krylov structure
would be lost with this approach, but there are trade-offs.

A downside to abandoning the Krylov structure is a loss of efficiency in
obtaining Ritz approximations and associated error estimates directly from
H. Also, certain very powerful polynomial approximation properties are
lost. However, there are some significant advantages.

• There is the possibility of admitting approximate solutions to the block
linear system (A− µI)W = V. Other than the effect on convergence,
there is no set accuracy requirement for these solves. This is in contrast
to the Krylov setting, where important theoretical properties are lost
if these solves are not accurate enough.

558 D. C. Sorensen

• If a sequence of closely related problems is being solved, as in a
parameter study, the entire subspace basis from the previous problem
can be used as the initial basis for the next problem. In the (single-
vector) Krylov setting we must be content with a linear combination
of the previous basis vectors (or Ritz vectors) to form a single starting
vector for the next problem.

• If an iterative method is used to solve (A − µI)w = v approximately,
then several matrix-vector products are performed for each access to
the matrix A. This can be quite important on high-performance
architectures where it is desirable to perform as many floating point
operations as possible per each memory access.

• It is possible to be very general in constructing vectors to adjoin to the
subspace. Schemes may be devised that do not attempt to solve the
shift-invert equations directly, but instead attempt to construct defect
corrections as vectors to adjoin to the subspace. Davidson’s method
(Davidson 1975) and its variants are based on this idea.

6.1. Davidson’s method

Davidson’s method has been a mainstay in computational chemistry, where
it is generally preferred over the Lanczos method. Typically, ab initio

calculations in chemistry result in large symmetric positive definite matrices,
which are strongly diagonally dominant.

Davidson’s method attempts to exploit that structure. Given a subspace
Sk = Range(Vk) of dimension k with orthogonal basis matrix Vk and a
selected Ritz value θ ∈ σ(V∗

kAVk) with corresponding Ritz vector x̂, the
strategy is to expand the space with a residual defect correction designed
to improve the selected Ritz value. In the following discussion one should
regard x̂ as the current approximation to an eigenvector x and θ as the
current approximation to the corresponding eigenvalue θ.

If λ is the closest eigenvalue to θ and x is a corresponding eigenvector,
putting x = x̂ + z and λ = θ + δ and expanding gives the standard second-
order perturbation equation

(A− θI)z = −(A− θI)x̂ + x̂δ + zδ (6.1)

= −r + x̂δ +O(‖zδ‖) (6.2)

≈ −r + x̂δ. (6.3)

Typically, this second-order residual correction equation is completed by
forcing a condition such as z∗x̂ = 0. Davidson (1975) chooses to approximate
DA−θI ≈ A−θI on the left side and ignore both the first- and second-order
terms on the right side, using the equation

(DA − θI)z = −r where r = (A− θI)x̂

Eigenvalue methods 559

to obtain an approximate residual correction step z. A novelty of the
Davidson approach was to orthogonalize z against the existing basis set
to obtain a new basis vector vk+1 in the direction (I−VkV

∗
k)z, and expand

the space to Sk+1 = Range(Vk+1) where Vk+1 = [Vk,vk+1]. A new Ritz
value and vector are obtained from the updated space, and then this process
is repeated until a storage limit is reached and the method is restarted.

This method has been quite successful in finding dominant eigenvalues
of strongly diagonally dominant matrices. Evidently, from the second-order
expansion and as suggested in Davidson (1993), this scheme is related to a
Newton–Raphson iteration, and this has been used as a heuristic to explain
its fast convergence.

Numerical analysts have attempted to explain the success of this approach
by viewing (DA − θI)−1 as a preconditioner, or as an approximation to
(A− θI)−1. With this interpretation, improvements to Davidson’s method
have been attempted through the introduction of more sophisticated pre-
conditioners (Crouzeix, Philippe and Sadkane 1994, Morgan 1991, Morgan
and Scott 1993). However, a perplexing aspect of this interpretation has
been that the ultimate preconditioner, namely (A−θI)−1, would just result
in z = x̂ and would not expand the search space.

6.2. The Jacobi–Davidson method

Progress towards improving on Davidson was finally made after recognizing
that the correction should be restricted to the orthogonal complement of
the existing space. This notion follows almost directly from reconsidering
the second-order correction equation (6.1) and completing the equations by
forcing the correction z to be orthogonal to x̂. This may be accomplished by
forming a bordered set of equations or by explicit projection. Multiplying
on the left of (6.1) by the projection (I− x̂x̂∗) and requiring x̂∗z = 0 gives

(I− x̂x̂∗)(A− θI)(I− x̂x̂∗)z = (I− x̂x̂∗)(−r + x̂δ +O(‖zδ‖)) (6.4)

= −r +O(‖zδ‖) (6.5)

≈ −r. (6.6)

The second equality follows from the observation that θ = x̂∗Ax̂ is a
Rayleigh quotient, and thus r = Ax̂− xθ = (I− x̂x̂∗)Ax.

This formulation actually results in a second-order correction z = (I −
x̂x̂∗)z that is orthogonal to x̂. The coefficient matrix (I− x̂x̂∗)(A− θI)(I−
x̂x̂∗) is indeed singular, but the linear system is consistent and offers no
fundamental difficulty to an iterative method. Moreover, if θ approximates a
simple eigenvalue that is moderately separated from the rest of the spectrum
of A, this system is likely to be better conditioned than one involving
A − θI as a coefficient matrix, since the nearly singular subspace has been
projected out.

560 D. C. Sorensen

Now, the Davidson idea can be fully realized. The projected correction
equation (6.4) is solved iteratively. Typically, this is done with a precondi-
tioned iterative method for linear systems. Then the correction is used as
with the original Davidson idea to expand the search space. Note that one
step of the preconditioned GMRES method using DA−θI as a preconditioner
would result in Davidson’s method.

This approach due to Sleijpen and van der Vorst (1995) is called the
Jacobi–Davidson (JD) method. The method applied to a symmetric A = A∗

is outlined in Algorithm 7. The hat notation x̂ is dropped in that description
and x is the current approximate eigenvector. The update to obtain Hk from
Hk−1 is just slightly more complicated for nonsymmetric A.

Set x = v1 = v/||v||2 for some initial guess v;
w = Av1, θ = H(1, 1) = [v∗

1w], r = w − θx;
while ||r||2 > ε

Solve (approximately) for z ⊥ x:
(I− xx∗)(A− θI)(I− xx∗)z = −r;

c = V∗

k−1z ; z = z−Vk−1c;
vk = z/||z||2; Vk = [Vk−1,vk];
w = Avk;

[
h

α

]
= V∗

kw ; Hk =

[
Hk−1 h

h∗ α

]
;

Compute Hky = yθ;
(θ the largest eigenvalue of Hk, ||y||2 = 1)
x← Vky;
r = Ax− xθ;

end

Algorithm 7. The Jacobi–Davidson method for λmax(A) with A = A∗

There are several ways to approximately solve the correction equation.
Returning to the second-order expansion (6.1),

(A− θI)z = −r + x̂δ,

to get z orthogonal to x̂, choose

δ =
x̂∗(A− θI)−1r

x̂∗(A− θI)−1x̂
.

Eigenvalue methods 561

If (A− θI) is replaced with a preconditioner K, then we set

z = −K−1r + K−1x̂ with δ =
x̂∗K−1r

x̂∗K−1x̂
.

If the basis vectors Vk are not retained and z is not orthogonalized against
them, this becomes the method proposed by Olsen, Jørgensen and Simons
(1990).

If this correction equation is to be solved approximately with a precon-
ditioned iterative method, care must be taken to obtain efficiency. Left-
preconditioning can be applied efficiently, and it is common to have a left
preconditioner Ko for A available (e.g., to solve linear systems required to
track the dynamics). We can then take K := Ko − µI as a preconditioner
for A−µI, where µ is a value reasonably close to the desired eigenvalue. Of
course, it is possible to update µ = θk at each JD iteration, but the cost of
construction and factorization of a new preconditioner for each value of θk
may overcome the gains from accelerated convergence. To be effective, the
preconditioner should be restricted to a subspace that is orthogonal to x̂.
Thus, it is desirable to work with the restricted preconditioner

K̃ := (I− x̂x̂∗)K(I− x̂x̂∗).

This is likely to be a good preonditioner for the restricted operator Ã :=
(I− x̂x̂∗) (A− θI) (I− x̂x̂∗). If we use a Krylov subspace iteration method
for solving

Ãz = −r

that is initialized with z0 = 0, then all vectors occurring in the iterative
solution process will be automatically orthogonal to x̂.

Typically, the iterative solver will require repeated evaluation of expres-
sions like

w = K̃−1Ãv

for vectors v generated during the iteration.
Since x̂∗v = 0, we first compute y = (A − θI)v. Then we have to solve

w ⊥ x̂ from K̃w = (I− x̂x̂∗)y. This amounts to solving

(I− x̂x̂∗)K(I− x̂x̂∗)w = (I− x̂x̂∗)y.

Observe that this equation will be satisfied by w if we are able to solve

(I− x̂x̂∗)Kw = (I− x̂x̂∗)y with w∗x̂ = 0.

This is easily accomplished by solving the bordered equation
[

K x̂

x̂∗ 0

] [
w

δ

]
=

[
y

0

]
.

562 D. C. Sorensen

From this equation, it follows that

(i) w∗x̂ = 0 and (ii) Kw = y − x̂δ.

Hence,
(I− x̂x̂∗)Kw = (I− x̂x̂∗)(y − x̂δ) = (I− x̂x̂∗)y,

with w∗x̂ = 0 as required.
This block system need not be formed explicitly. Block elimination will

give the solution through the following steps:

Given y = (A− µI)v;

Solve K[ty tx] = [y x̂];

Set δ =
x̂∗ty

x̂∗tx
;

Set w = ty − txδ.

Since we are interested in solving this for several vj during the course of

the iterative method for solving the correction equation Ãz = −r, this can
be re-organized for efficiency by computing tx once and for all and then
re-using it for each of the vj .

Solve Ktx = x̂;

for j = 1,2, . . . , until convergence,

Produce vj from the iterative method;

y← (A− µI)vj ;
Solve Kty = y;

Set δ =
x̂∗ty

x̂∗tx
;

Set w = ty − txδ.

With this scheme we only need to solve a linear system involving K once
per step of the Krylov iteration for solving Ãz = −r. Additional details on
this implementation are specified in Sleijpen and van der Vorst (1995).

With respect to parallel computation, the Jacobi–Davidson method has
the same computational structure as a Krylov method. Successful parallel
implementation largely depends on how well an effective preconditioner
can be parallelized. An additional complication is that, even if a good
preconditioner K exists for A, there is no assurance that K − θI will be
a good one for A − θI. Moreover, since this operator is usually indefinite,
there is often difficulty with incomplete factorization preconditioners.

6.3. JDQR: restart and deflation

The Jacobi–Davidson method can be extended to find more than one
eigenpair by using deflation techniques. As eigenvectors converge, the
iteration is continued in a subspace forced to be orthogonal to the converged
eigenvectors.

Eigenvalue methods 563

Such an extension is developed in Fokkema, Sleijpen and van der Vorst
(1996) to obtain an algorithm called JDQR, for computing several eigenpairs
at once. The algorithm is based on the computation of a partial Schur form
of A,

AQk = QkRk,

where Qk is an (n × k) orthonormal matrix, and Rk is a (k × k) upper
triangular matrix, with k ≪ n. As noted previously, if (y, λ) is an eigenpair
of Rk, then (Qky, λ) is an eigenpair of A.

To develop this algorithm, we need to derive conditions required of a new
column q in order to expand an existing decomposition with q to obtain an
updated partial Schur decomposition:

A [Qk,q] = [Qk,q]

[
Rk s

0 λ

]

with Q∗q = 0.
Equating the last column on both sides gives

Aq = Qks + qλ.

Multiplying this equation on the left by I − QkQ
∗
k and enforcing the

requirement Q∗
kq = 0 gives

(I−QkQ
∗
k)Aq = (I−QkQ

∗
k)(Qks + qλ) = qλ.

Finally, we arrive at

(I−QkQ
∗
k)A(I−QkQ

∗
k)q = qλ,

which shows that the new pair (q, λ) must be an eigenpair of

Ã = (I−QkQ
∗
k)A(I−QkQ

∗
k).

Now, we are prepared to apply the JD method so that the partial Schur
decomposition may be updated.

The JDQR iteration. Assume we have AQk = QkRk. Apply the
JD iteration to Ã and construct an orthonormal subspace basis Vℓ :=
[v1, . . . ,vℓ]. Then a projected ℓ × ℓ matrix M = V∗

ℓ ÃVℓ is formed. We
then compute the complete Schur form MU = US, with U∗U = I, and S

upper triangular. This can be done with the standard QR algorithm (Golub
and Van Loan 1996).

Next, S is reordered (using Givens’ similarity transformations) to remain
upper triangular but with |Si,i − τ | now nondecreasing with i. The first
few diagonal elements of S then represent the eigen-approximations closest
to τ , and the first few of the correspondingly reordered columns of Vk

represent the subspace of best eigenvector approximations. If memory is
limited then this subset can be used for restart. The other columns are

564 D. C. Sorensen

simply discarded. The remaining subspace is expanded according to the
Jacobi–Davidson method. This is repeated until sufficiently accurate Ritz
values and vectors have been obtained.

After convergence of this procedure, we have (q, λ) with Ãq = qλ. Since

Q∗
kÃ = 0, we have Q∗

kq = 0 automatically. Now, set s = Q∗
kAq to obtain

Aq = Qks + qλ,

and update

Qk+1 := [Qk,q] and Rk+1 :=

[
Rk s

0 λ

]

to obtain a new partial Schur decomposition of dimension k + 1.
This process is repeated until the desired number of eigenvalues has been

obtained.

7. The generalized eigenproblem

In many applications, the generalized eigenproblem Ax = Bxλ arises
naturally. A typical setting is a finite element discretization of a continuous
problem where the matrix B arises from inner products of basis functions.
In this case, B is symmetric and positive (semi-) definite, and for some
algorithms this property is a necessary condition. Generally, algorithms
are based on transforming the generalized problem to a standard problem.
The details of how this is done are clearly important to efficiency and
robustness. However, the fundamentals and performance of the algorithms
for the standard problem carry over directly to the generalized case.

7.1. Krylov methods with spectral transformations

Perhaps the most successful general scheme for converting the generalized
problem to a standard problem that is amenable to a Krylov or a subspace
iteration method is to use the spectral transformation suggested by Ericsson
and Ruhe (1980):

(A− σB)−1Bx = xν. (7.1)

An eigenvector x of this transformed problem is also an eigenvector of the
original problem Ax = Bxλ, with the corresponding eigenvalue given by
λ = σ + 1

ν . With this transformation there is generally rapid convergence
to eigenvalues near the shift σ because they are transformed to extremal
well-separated eigenvalues. Perhaps an even more influential aspect of this
transformation is that eigenvalues far from σ are damped (mapped near
zero). It is often the case in applications that the discrete operator has
eigenvalues that are large in magnitude but nonphysical and uninteresting
with respect to the computation. The spectral transformation automatically
overcomes the effect of these. A typical strategy is to choose σ to be a point

Eigenvalue methods 565

in the complex plane that is near eigenvalues of interest and then compute
the eigenvalues ν of largest magnitude in equation (7.1). It is not necessary
to have σ really close to an eigenvalue. This transformation together with the
implicit restarting technique is usually adequate for computing a significant
number of eigenvalues near σ.

It is important to note that, even when B = I, we must generally use
the shift-invert spectral transformation to find interior eigenvalues. The
extreme eigenvalues of the transformed operator Aσ are generally large and
well separated from the rest of the spectrum. The eigenvalues ν of largest
magnitude will transform back to eigenvalues λ of the original A that are
in a disk about the point σ. This is illustrated in Figure 7, where the +
symbols are the eigenvalues of A, and the circled ones are the computed
eigenvalues in the disk (dashed circle) centred at the point σ.

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

Figure 7. Eigenvalues from shift-invert

The Arnoldi process may be applied to the matrix Aσ := (A− σB)−1B.
Whenever a matrix-vector product w← Aσv is required, the following steps
are performed:

z = Bv;
solve (A− σB)w = z for w.

566 D. C. Sorensen

The matrix A − σB is factored initially with a sparse direct LU-
decomposition or in a symmetric indefinite factorization, and this single
factorization is used repeatedly to apply the matrix operator Aσ as required.

When A and B are both symmetric and B is positive (semi-) definite, this
approach needs to be modified slightly to preserve symmetry. In this case we
can use a weighted B (semi-) inner product in the Lanczos/Arnoldi process
(Ericsson and Ruhe 1980, Grimes et al. 1994, Meerbergen and Spence 1997).
This amounts to replacing the computation of h ← V∗

j+1w; and βj = ‖fj‖
with h← V∗

j+1Bw; and

βj =
√

f∗j Bfj ,

respectively, in the Arnoldi process shown in Algorithm 2.
When A is symmetric and B is symmetric positive (semi-) definite, the

matrix operator Aσ is self-adjoint with respect to this (semi-) inner product,
that is, 〈Aσx,y〉 = 〈x,Aσy〉 for all vectors x,y, where 〈w,v〉 :=

√
w∗Bv.

This implies that the projected Hessenberg matrix H is actually symmetric
and tridiagonal and the standard three-term Lanczos recurrence is recovered
with this inner product.

There is a subtle aspect to this approach when B is singular. The most
pathological case is when Null(A) ∩ Null(B) 6= {0}. If x ∈ Null(A) ∩
Null(B) is nonzero, then

Ax = Bxλ

for every complex number λ. This case is not treated here. A challenging
but far less devastating situation occurs when this intersection is just the
zero vector. In this case, Null(Aσ) = Null(B) for any σ that is not
a generalized eigenvalue of the pair (A,B). Unfortunately, any nonzero
vector x ∈ Null(B) corresponds to an infinite eigenvalue, since any such x

will be an eigenvector of Aσ corresponding to the eigenvalue ν = 0, and
the formula λ = σ + 1

ν indicates that x must correspond to an infinite
eigenvalue of the original problem. Using the B inner product in the shift-
invert Arnoldi process and requesting the eigenvalues ν of largest magnitude
for Aσ through implicit restarting avoids these troublesome eigenvalues.
In theory (i.e., in exact arithmetic), if the starting vector v1 = Aσv is
in Range(Aσ) then the method cannot converge to a zero eigenvalue of
Aσ. However, eigenvectors are only computed approximately and these may
have components in directions corresponding to infinite eigenvalues. Such
components can be purged from a computed eigenvector x by replacing it
with x ← Aσx and renormalizing. Therefore, the recommendation is to
begin the Arnoldi process with a starting vector that has been multiplied
by Aσ and, after convergence, to perform a purging step on the converged
approximate eigenvectors.

Eigenvalue methods 567

A clever way to perform this operation has been suggested by Ericsson
and Ruhe (1980). If x = Vy with Hy = yθ, then

Aσx = VHy + feTk y = xθ + feTk y.

Replacing the x with the improved eigenvector approximation x ← (xθ +
feTk y) and renormalizing has the effect of purging the undesirable com-
ponents without requiring any additional matrix-vector products with Aσ.
The residual error of the computed Ritz vector with respect to the original
problem is

‖Ax−Bxλ‖ = ‖Bf‖|e
T
k y|
|θ|2 , (7.2)

where λ = σ + 1/θ. Since |θ| is usually quite large under the spectral
transformation, this new residual is generally considerably smaller than the
original.

7.2. Additional methods and accelerations

When a sparse direct factorization is possible, the shift-invert spectral
transformation combined with implicitly restarted Arnoldi is probably the
method of choice. However, this may not be practical in many applications.
In a parallel computing environment, success of this approach also depends
critically on how well the solution process for the shift-invert equations can
be parallelized. Finally, if applying Aσ is very cheap then one may wish to
avoid the expense of implicit restarting and complete orthogonalization.

One approach that avoids the need to keep a complete set of basis vectors
is the Bi-Lanczos method. This biorthogonal dual-basis approach is based on
a three-term recurrence that results in a nonsymmetric tridiagonal projected
matrix instead of an upper Hessenberg projection. This Bi-Lanczos method
is related to the QMR and Bi-CG methods for linear systems. Both methods
lead to the same projected tridiagonal matrix. Freund and Nachtigal
(1991) and Cullum and Willoughby (1986) have published codes for the
computation of eigenvalues using this approach. However, the accuracy
of these methods is a point of concern, since the projections are oblique
rather than orthogonal as they are in the Arnoldi process. Also, there is
no particular advantage in having the projected matrix in nonsymmetric
tridiagonal form, since the only algorithms that can take advantage of the
structure are generally based on hyperbolic rotations, and are of questionable
numerical stability.

An alternative spectral transformation that can be effective in linear
stability analysis in CFD problems is the generalized Cayley transformation

C := (A− σB)−1(A− λB).

An important aspect of this transformation is the additional control on the

568 D. C. Sorensen

image of the left half plane (say) under the transformation. A detailed
study may be found in Garratt (1991) and Meerbergen and Spence (1997).
Lehoucq and Salinger (2001) make particularly effective use of this trans-
formation in a stability analysis of a simulation of a CVD reactor with over
four million variables. More recently, 16 million variable problems of this
type have been solved (Burroughs, Romero, Lehoucq and Salinger 2001).

The use of inexact forms of the Cayley transform is studied in Meerbergen
(1996), where the required inverse operation is approximated by a few steps
of an iterative method, for Arnoldi’s method. The wanted eigensolutions are
solutions of Cx = 0. The essential part A − λB is computed exactly and
the inexact inversion of A−σB may be viewed as a kind of preconditioning.
Indeed, this technique has a close relationship to polynomial precondition-
ing. The inexact Cayley transform is well suited to parallel computing since
the dominant computational elements are matrix-vector products instead of
direct linear solves.

Ruhe (1994b) introduced a remarkable generalization of the Krylov space
that admits the application of several different shift-invert transforms within
the same iteration. This is called rational Krylov subspace (RKS) iteration
and the transformations are of the form

(δjA− γjB)−1(σjA− ρjB),

in which the coefficients may be different for each iteration step j. With
respect to the subspace with these operators, the given problem is projected
onto a small generalized system

(ζKj,j − ηLj,j)y = 0,

where Kj,j and Lj,j are upper Hessenberg matrices of dimension j. This
small system may be solved by the QZ algorithm in order to obtain
approximate values for an eigenpair. The parameters in RKS can be chosen
to obtain faster convergence to interior eigenvalues. When combined with
a certain deflation scheme, a considerable number of eigenvalues can be
computed without being forced to construct a large basis set. Eigenvectors
can be written to auxiliary storage as needed. For a comparison of RKS and
Arnoldi, see Ruhe (1994a, 1994b). Again, successful parallelization for this
approach depends on how well linear systems with the matrix δjA − γjB
can be solved to sufficiently high accuracy.

Clearly, the most straightforward alternative to solving the shift-invert
equations directly is to use a preconditioned iterative method to solve them
approximately. However, there are several difficulties. The shifted matrix is
often ill-conditioned because σ will be chosen near an interesting eigenvalue.
Moreover, this shifted matrix will usually be indefinite (or have indefinite
symmetric part). These are the conditions that are most difficult for iterative
solution of linear systems. A further difficulty is that each linear system

Eigenvalue methods 569

must be solved to a greater accuracy than the desired accuracy of the
eigenvalue calculation. Otherwise, each step of the Lanczos/Arnoldi process
will essentially involve a different matrix operator. The approach can be
quite successful, however, if done with care. A good example of this may be
found in Lehoucq and Salinger (2001).

Subspace iteration methods are more amenable to admitting inaccurate
approximate solutions to the shift-invert equations. This has already been
discussed in Section 6.2. The Jacobi–Davidson approach can be adapted
nicely to the generalized problem and is particularly well suited to the
introduction of inaccurate approximate solutions.

For a good overview of subspace iteration methods, see Saad (1992). There
are several other methods that allow the possibility of inexact solves and
preconditioning in eigenvalue computations. Two of these are the LOBPCG
method developed in Knyazev (2001) and the TRQ method developed in
Sorensen and Yang (1998).

Knyazev (2001) presents numerical evidence to suggest that LOBPCG
performs for symmetric positive definite eigenproblems as the preconditioned
conjugate gradient method performs for symmetric positive definite linear
systems. In Sorensen and Yang (1998), the TRQ method is derived as a
truncation of the RQ iteration. This is just like the QR method with the
exception that the shifted matrices are factored into an orthogonal Q times
an upper triangular R. Quadratic convergence takes place in the leading
column of Q and preconditioned inexact solves are possible to complete the
update equations. This scheme is very closely related to the JDQR method.

7.3. The Jacobi–Davidson QZ algorithm

The Jacobi–Davidson method can be modified for the generalized eigen-
problem without having to transform the given problem to a standard
eigenproblem. In this formulation, called JDQZ (Fokkema et al. 1996),
explicit inversion of matrices is not required. The method is developed with
orthogonal projections and the theme is once again to compute a partial
(generalized) Schur decomposition. A subspace is generated onto which the
given eigenproblem is projected. The much smaller projected eigenproblem
is solved by standard direct methods, and this leads to approximations for
the eigensolutions of the given large problem. Then, a correction equation
for a selected eigenpair is set up. The solution of the correction equation
defines an orthogonal correction for the current eigenvector approximation.
The correction, or an approximation for it, is used for the expansion of the
subspace and the procedure is repeated.

The subspace projection leads to a formulation that may be viewed as an
inexact truncated form of the QZ factorization. The algorithm is designed to
compute a few eigenvalues of Ax = Bxλ close to a given target τ ∈ C. Given

570 D. C. Sorensen

a low-dimensional subspace S = Range(Vk), eigenvector approximations
called Petrov–Ritz values are extracted from a small projected problem
obtained through a Petrov–Galerkin projection.

Here Vk is an (n × k) matrix with orthonormal columns vj . A Petrov–
Galerkin condition is to define a Petrov–Ritz pair (x, θ), where x ∈ S. We
require

〈w,Ax−Bxθ〉 = 0, for all w ∈ Range(Wk),

where Wk is another (n × k) matrix with orthonormal columns wj . This
gives a small projected problem of order k:

W∗
kAVky −W∗

kBVkyθ = 0. (7.3)

For each eigenpair (y, θ), we obtain a Petrov–Ritz vector x = Vky and
Petrov–Ritz value θ as approximate eigenpairs for the original problem.

Using essentially the same approach described for the standard problem
(see Section 6.3), the basis sets Vk and Wk are each increased one dimension
by including directions obtained from a residual correction equation. The
method is briefly described here. For full details one should consult Fokkema
et al. (1996).

First the QZ algorithm (Golub and Van Loan 1996) is used to reduce (7.3)
to a generalized Schur form. This provides orthogonal (k × k) matrices UR

and UL, and upper triangular (k × k) matrices SA and SB, such that

U∗
L (W∗

kAVk)UR = SA, (7.4)

U∗
L (W∗

kBVk)UR = SB. (7.5)

The decomposition is ordered (by similarity transformations) so that the
leading diagonal elements of SA and SB represent the eigenvalue approxim-
ation closest to the target value τ . The approximation for the eigenpair is
then taken as

(q̃, θ) := (VkUR(:, 1),SB(1, 1)/SA(1, 1)), (7.6)

assuming that SA(1, 1) 6= 0. This gives a residual vector :

r := Aq̃−Bq̃θ.

To obtain a correction equation analogous to (6.4), we define an auxiliary
vector w̃γ = Aq̃−Bq̃τ , where γ is such that ||w̃||2 = 1. Then a correction
equation is defined to provide a correction z ⊥ q̃:

(I− w̃w̃∗)(A− θB)(I− q̃q̃∗)z = −r. (7.7)

In practice, only a few steps of a preconditioned iterative method are done
to get an approximate solution to (7.7).

The approximation for z is then further orthogonalized with respect to
Vk to get the new basis vector vk+1 in the direction of (I−VkV

∗
k)z. The ex-

pansion vector wk+1 is taken in the direction (I−WkW
∗
k)(Az−Bzτ). This

Eigenvalue methods 571

gives a brief description of the harmonic Petrov value approach proposed in
Fokkema et al. (1996).

7.4. JDQZ: restart and deflation

As in JDQR, deflation and restarting must be employed to find several
eigenvalues and vectors simultaneously. As eigenvectors converge, the
iteration is continued in a subspace orthogonal to the converged vectors.
The algorithm is based on the computation of a partial generalized Schur
form for the matrix pair (A,B):

AQk = ZkSk and BQk = ZkTk,

in which Qk and Zk are (n×k) orthonormal matrices and Sk, Tk are (k×k)
upper triangular matrices, with k ≪ n. The scheme is more complicated but
essentially follows the ideas described previously for JDQR. The full details
may be found in Fokkema et al. (1996).

8. Eigenvalue software

Several software packages were developed during the 1980s for large-scale
symmetric problems. Perhaps the most influential of these was Grimes
et al. (1994). This block Lanczos code has been a mainstay of structural
analysis calculations in industrial applications. It has been updated many
times and is still the most heavily used code in this field. Considerable
progress has been made over the past decade on the production of high-
quality mathematical software for large nonsymmetric eigenvalue problems.
Many packages are freely available online, and may be found via netlib.

A few of these are:

Lanczos (http://www.netlib.org/)

Authors: Jane Cullum and Ralph A. Willoughby
Description: Lanczos Algorithms for computing a few eigenvalues and
eigenvectors of a large (sparse) symmetric matrix, real symmetric and
Hermitian matrices; singular values and vectors of real, rectangular
matrices (Fortran)
Reference: Cullum and Willoughby (1985)

SRRIT (http://www.netlib.org/)

Authors: Z. Bai and G. W. Stewart
Description: Subspace iteration to calculate the dominant invariant
subspace of a nonsymmetric matrix (Fortran)
Reference: Bai and Stewart (1997)

572 D. C. Sorensen

ARNCHEB (http://www.cerfacs.fr/~chatelin/)

Authors: T. Braconnier and F. Chatelin
Description: Arnoldi–Chebyshev restarted method for computing a
few eigenvalues and vectors of large, unsymmetric sparse matrices
(Fortran)
Reference: Users’ Guide (http://www.cerfacs.fr/~chatelin/)

LOBPCG (http://www-math.cudenver.edu/~aknyazev/software/CG)

Author: A. Knyazev
Description: Locally optimal block preconditioned conjugate gradient
method for a few eigenvalues and vectors of large symmetric (or
Hermitian) matrices (Matlab)
Reference: Knyazev (2001)

Laso (http://www.netlib.org/)

Author: D. Scott
Description: Lanczos method for a few eigenvalues and eigenvectors of
a large (sparse) symmetric matrix (Fortran)
Reference: Parlett and Scott (1979)

SVDpack (http://www.netlib.org/)

Authors: M. W. Berry and M. Liang
Description: Computes a partial SVD of large sparse non-Hermitian
complex matrices using the Lanczos algorithm for A∗A with selective
reorthogonalization (Fortran)
Reference: Berry (1992)

IRBL (http://www.cs.bsu.edu/~jbaglama/#Software)

Authors: J. Baglama, D. Calvetti and L. Reichel
Description: Block implicitly restarted Lanczos with Leja points
as shifts.

JDQR, JDQZ (http://www.math.uu.nl/people/sleijpen/JD software)

Author: G. L. G. Sleijpen
Description: JDQR and JDQZ implementations of Jacobi–Davidson
method for a partial Schur decomposition corresponding to a selected
subset of eigenvalues (eigenvectors also computed on request). Sym-
metric, nonsymmetric, generalized problems solved (Matlab)
Reference: Sleijpen and van der Vorst (1995), Fokkema et al. (1996)

Eigenvalue methods 573

ARPACK (http://www.caam.rice.edu/software/ARPACK/)

Authors: R. B. Lehoucq, D. C. Sorensen, and C. Yang
Description: Implicitly restarted Arnoldi method for computing a
partial Schur decomposition corresponding to a selected subset of
eigenvalues (eigenvectors also computed on request). Symmetric,
nonsymmetric, generalized and SVD problems solved (Fortran)
Reference: Lehoucq, Sorensen and Yang (1998)

We should also mention the codes available in the Harwell Subroutine
Library (HSL). These are freely available to UK academics, but not in
general. In particular, the code EB13 based on Scott (200x) is available
for nonsymmetric problems.

8.1. Software design

Today’s software designers are faced with many new options in languages,
design options, and computational platforms. However, certain principles
can lead to robust software that is both portable and efficient over a wide
variety of computing platforms.

When designing general-purpose software for use in the public domain,
it is important to adopt a development strategy that will meet the goals of
robustness, efficiency, and portability. Two very important principles are
modularity and independence from specific vendor-supplied communication
and performance libraries.

In this final section, we discuss some design and performance features
of the eigenvalue software ARPACK. This is a collection of Fortran77
subroutines based on the IRAM described in Algorithm 3. This software
can solve large-scale non-Hermitian or Hermitian (standard and generalized)
eigenvalue problems. It has been used on a wide range of applications.
P ARPACK is a parallel extension to the ARPACK library and is designed
for distributed memory message passing systems. The message passing
layers currently supported are BLACS and MPI (MPI Forum 1994, Dongarra
and Whaley 1995). Performance and portability are attained simultaneously
because of the modular construction of the dense linear algebra operations.
These are based on the Level 2 and Level 3 BLAS (Dongarra et al. 1988, Don-
garra, DuCroz, Duff and Hammarling 1990) for matrix-vector and matrix-
matrix operations and on LAPACK (Anderson et al. 1992) for higher-level
dense linear algebra routines.

The important features of ARPACK and P ARPACK are as follows.

• A reverse communication interface.

• Computes k eigenvalues that satisfy a user-specified criterion such as
largest real part, largest absolute value, etc.

574 D. C. Sorensen

• A fixed predetermined storage requirement of n · O(k) +O(k2) bytes.

• Driver routines are included as templates for implementing various
spectral transformations to enhance convergence and to solve the
generalized eigenvalue problem, or the SVD problem.

• Special consideration is given to the generalized problem Ax = Bxλ
for singular or ill-conditioned symmetric positive semi-definite B.

• A Schur basis of dimension k that is numerically orthogonal to working
precision is always computed. These are also eigenvectors in the
Hermitian case. In the non-Hermitian case eigenvectors are available
on request. Eigenvalues are computed to a user-specified accuracy.

Reverse communication

Reverse communication is an artifact of certain restrictions in the Fortran
language; with reverse communication, control is returned to the calling
program when interaction with the matrix is required. (For the C++
programmer, reverse communication is the Fortran substitute for defining
functions specific to the class of matrices.) This is a convenient interface for
experienced users. However, it seems to be a difficult concept to grasp for
inexperienced users. Even though it is extremely useful for interfacing with
large application codes, the software maintenance problems imposed on the
developers are very demanding.

This interface avoids having to express a matrix-vector product through
a subroutine with a fixed calling sequence. This means that the user is
free to choose any convenient data structure for the matrix representation.
Also, it is up to the user to partition the matrix-vector product in the most
favourable way for parallel efficiency. Moreover, if the matrix is not available
explicitly, the user is free to express the action of the matrix on a vector
through a subroutine call or a code segment. It is not necessary to conform
to a fixed format for a subroutine interface, and hence there is no need to
communicate data through the use of COMMON.

A typical use of this interface is illustrated as follows:

10 continue

call snaupd (ido, bmat, n, which,...,workd,..., info)

if (ido .eq. newprod) then

call matvec (’A’, n, workd(ipntr(1)), workd(ipntr(2)))

else

return

endif

go to 10

This shows a code segment of the routine the user must write to set up
the reverse communication call to the top level ARPACK routine snaupd

Eigenvalue methods 575

to solve a nonsymmetric eigenvalue problem. The action requested of the
calling program is specified by the reverse communication parameter ido.
In this case the requested action is multiply the vector held in the array
workd beginning at location ipntr(1) and and then to insert into the array
workd beginning at location ipntr(2). Here a call is made to a subroutine
matvec. However, it is only necessary to supply the action of the matrix on
the specified vector and put the result in the designated location. Because of
this, reverse communication is very flexible and even provides a convenient
way to use ARPACK interfaced with code written in another language such
as C or C++.

8.2. Parallel aspects

The parallelization paradigm found to be most effective for ARPACK on
distributed memory machines was to provide the user with a single program

multiple data (SPMD) template. This means there are many copies of the
same program running on multiple processors executing the same instruction
streams on different data. The parallelization scheme described here is well
suited to all of the methods discussed earlier, since they all share the basic
needs of orthogonalizing a new vector with respect to a current basis for a
subspace. They also share the need to apply a linear operator to a vector.

The reverse communication interface provides a means for a very
simple SPMD parallelization strategy. Reverse communication allows the
P ARPACK codes to be parallelized internally without imposing a fixed
parallel decomposition on the matrix or the user-supplied matrix-vector
product. Memory and communication management for the matrix-vector
product w← Av can be optimized independently of P ARPACK. This fea-
ture enables the use of various matrix storage formats as well as calculation
of the matrix elements as needed.

The calling sequence to ARPACK remains unchanged except for the
addition of an MPI communicator (MPI Forum 1994, Dongarra and
Whaley 1995). Inclusion of the communicator is necessary for global
communication as well as managing I/O.

The numerically stable generation of the Arnoldi factorization

AVk = VkHk + fke
T
k

coupled with an implicit restarting mechanism is the basis of the ARPACK
codes. The simple parallelization scheme used for P ARPACK is as follows:

• Hk replicated on every processor

• Vk is distributed across a 1D processor grid (blocked by rows)

• fk and workspace distributed accordingly.

576 D. C. Sorensen

The SPMD code looks essentially like the serial code except that the local
block of the set of Arnoldi vectors, Vloc, is passed in place of V, and nloc,
the dimension of the local block, is passed instead of n.

With this approach there are only two communication points within the
construction of the Arnoldi factorization inside P ARPACK: computation
of the 2-norm of the distributed vector fk and the orthogonalization of fk to
Vk using classical Gram–Schmidt with DGKS correction (Daniel, Gragg,
Kaufman and Stewart 1976). Additional communication will typically
occur in the user-supplied matrix-vector product operation as well. Ideally,
this product will only require nearest neighbour communication among
the processes. Typically, the blocking of V coincides with the parallel
decomposition of the matrix A. The user is free to select an appropriate
blocking of V to achieve optimal balance between the parallel performance
of P ARPACK and the user-supplied matrix-vector product.

The SPMD parallel code looks very similar to that of the serial code.
Assuming a parallel version of the subroutine matvec, an example of the
application of the distributed interface is illustrated as follows:

10 continue

call psnaupd (comm, ido, bmat, nloc, which, ...,

* Vloc , ... lworkl, info)

if (ido .eq. newprod) then

call matvec (’A’, nloc, workd(ipntr(1)), workd(ipntr(2)))

else

return

endif

go to 10

Here, nloc is the number of rows in the block Vloc of V that has been
assigned to this node process.

The blocking of V is generally determined by the parallel decomposition
of the matrix A. For parallel efficiency, this blocking must respect the config-
uration of the distributed memory and interconnection network. Logically,
the V matrix is partitioned by blocks

VT = (V(1)T ,V(2)T , . . . ,V(nproc)T),

with one block per processor and with H replicated on each processor. The
explicit steps of the CGS process taking place on the jth processor are shown
in Algorithm 8.

Note that the function gnorm at step (1) is meant to represent the global
reduction operation of computing the norm of the distributed vector fk from

Eigenvalue methods 577

(1) βk ← gnorm(‖f (∗)
k ‖); v

(j)
k+1 ← f

(j)
k · 1

βk
;

(2) w(j) ← (Aloc)v
(j)
k+1;

(3)

(
h

α

)(j)

←
(

V
(j)T
k

v
(j)T
k+1

)
w(j);

(
h

α

)
← gsum

[(
h

α

)(∗)
]

(4) f
(j)
k+1 ← w(j) − (Vk,vk+1)

(j)

(
h

α

)
;

(5) Hk+1 ←
(

Hk h

βk eTk

)
;

(6) V
(j)
k+1 ← (Vk,vk+1)

(j);

Algorithm 8. The explicit steps of the process responsible for the j block

the norms of the local segments f
(j)
k , and the function gsum at step (3)

is meant to represent the global sum of the local vectors h(j) so that
the quantity h =

∑nproc
j=1 h(j) is available to each process on completion.

These are the only two communication points within this algorithm. The
remainder is perfectly parallel. Additional communication will typically
occur at step (2). Here the operation (Aloc)v is meant to indicate that the
user-supplied matrix-vector product is able to compute the local segment
of the matrix-vector product Av that is consistent with the partition of V.
Ideally, this would only involve nearest neighbour communication among
the processes.

Since H is replicated on each processor, the implicit restart mechanism
described in Section 4.4 remains untouched. The only difference is that the
local block V(j) is in place of the full matrix V. Operations associated with
implicit restarting are perfectly parallel with this strategy.

All operations on the matrix H are replicated on each processor. Thus
there are no communication overheads. However, the replication of H and
the shift selection and application to H on each processor amount to a
serial bottleneck limiting the scalability of this scheme when k grows with n.
Nevertheless, if k is fixed as n increases then this scheme scales linearly with
n, as we shall demonstrate with some computational results. In the actual
implementation, separate storage is not required for the Qi. Instead, it is
represented as a product of 2×2 Givens or 3×3 Householder transformations
that are applied directly to update Q. On completion of this accumulation

of Q, the operation V
(j)
m ← V

(j)
m Q occurs independently on each processor

j using the Level 3 BLAS operation GEMM.

578 D. C. Sorensen

An important aspect to this approach is that changes to the serial
version of ARPACK were minimal. Only eight routines were affected in a
minimal way. These routines either required a change in norm calculation to
accommodate distributed vectors (step (1)), modification of the distributed
dense matrix-vector product (step (4)), or inclusion of the context or
communicator for I/O (debugging/tracing).

8.3. Communication and synchronization

On many shared memory MIMD architectures, a level of parallelization
can be accomplished through compiler options alone, without requiring
any modifications to the source code. For example, on the SGI Power
Challenge architecture, the MIPSpro F77 compiler uses a Power Fortran

Accelerator (PFA) preprocessor to uncover the parallelism in the source code
automatically. PFA is an optimizing Fortran preprocessor that discovers
parallelism in Fortran code and converts those programs to parallel code. A
brief discussion of implementation details for ARPACK using PFA prepro-
cessing may be found in Debicki, Jedrzejewski, Mielewski, Przybyszewski
and Mrozowski (1995). The effectiveness of this preprocessing step is still
dependent on how suitable the source code is for parallelization. Since most
of the vector and matrix operations for ARPACK are accomplished via
BLAS and LAPACK routines, access to efficient parallel versions of these
libraries alone will provide a reasonable level of parallelization.

For distributed memory implementations, message passing between pro-
cesses must be explicitly addressed within the source code, and numerical
computations must take into account the distribution of data. In addition,
for the parallel code to be portable, the communication interface used for
message passing must be supported on a wide range of parallel machines and
platforms. For P ARPACK, this portability is achieved via the basic linear

algebra communication subprograms (BLACS) (Dongarra and Whaley 1995)
developed for the ScaLAPACK project and message passing interface (MPI)
(MPI Forum 1994).

8.4. Parallel performance

P ARPACK has been run on a wide variety of parallel processors. The
simple SPMD strategy has proved to be very effective. Near-linear scalability
has been demonstrated on massively parallel machines for the internal
dense linear algebra operations required to implement the IRAM. However,
such scalability relies entirely on the parallel efficiency of the user-supplied
matrix-vector product or linear solves when shift-invert is used. A synopsis
of such performance results is available in Maschhoff and Sorensen (1996).

Perhaps more important is the ability to solve real problems. A very
impressive computation has been done by Lehoucq and Salinger (2001) on a

Eigenvalue methods 579

linear stability analysis of a CVD reactor. The problem involved four million
variables resulting from a 3D finite element model. They used P ARPACK
on the Sandia-Intel 1024 processor Teraflop machine. A Cayley transforma-
tion (A− σ1B)w = (A + σ2B)v was used to accelerate convergence and to
better isolate the rightmost eigenvalues. The AZTEC package for iterative
solution of linear systems was used to implement this. They selected an
ILUT preconditioner with GMRES. In this calculation, P ARPACK only
contributed to about 5% of the total computation time. This is typical
of many applications. The application of the linear operator (in this case
the Cayley-transformed matrix) usually dominates the computation. The
internal operations required for IRAM are generally inconsequential when
compared to the application of the linear operator.

The Lehoucq and Salinger paper reports some very impressive results on
bifurcation as well as stability analysis. They also give a very interesting
study of the two-step CGS orthogonalization scheme in the context of the
GMRES calculations required to solve the linear systems for the Cayley
transformation. This is pertinent to all of the methods discussed here and
is of particular interest in the implementation of the Arnoldi factorization
that underlies GMRES and also ARPACK. Two-step CGS orthogonalization
is classical Gram–Schmidt followed by one step of the DGKS correction
described previously. This is done at every orthogonalization step. Con-
siderable experience with this option for CGS has demonstrated completely
reliable orthogonalization properties of many orthogonalization steps. It
completely resolves the numerical problems with CGS.

Lehoucq and Salinger compare the performance of CGS to that of modified
Gram–Schmidt. A comparison of computational times is shown in Figure 8.

Figure 8. DGKS correction

580 D. C. Sorensen

This comparison shows that two-step CGS scales almost linearly, while MGS
has very poor scalability properties. This is due to the many additional
communication points needed for vector-vector operations (Level 1 BLAS)
in comparison to the matrix-vector (Level 2 BLAS) formulation available
with CGS. In these calculations, problem size is increased in proportion to
the number of processors. Perfect scaling would give a flat horizontal graph
indicating a constant computational time.

It should be noted that (unrestarted) GMRES will give the same nu-
merical result for the linear system with either orthogonalization scheme.
However, the Intel machine (called ASCI Red) has very fast communication
and hence these results would be even more dramatic on most other
massively parallel platforms.

8.5. Summary

The implementation of P ARPACK is portable across a wide range of
distributed memory platforms. The portability of P ARPACK is achieved
by use of the BLACS and MPI. With this strategy, it takes very little effort
to port P ARPACK to a wide variety of parallel platforms. It has been
installed and successfully tested on many massively parallel systems.

9. Conclusions and acknowledgements

This introduction to the current state of the art in methods and software
for large-scale eigenvalue problems has necessarily been limited. There are
many excellent researchers working in the area. This discussion has focused
on IRLM and JDQR methods. We have tried to include brief descriptions
of most of the techniques that have been developed recently, but there are
certainly unintentional omissions. The author apologizes for these.

The recent advances for nonsymmetric problems have been considerable.
However, there is much left to be done. The areas of preconditioning and
other forms of convergence acceleration are very challenging. The ability
to compute interior eigenvalues reliably, without shift and invert spectral
transformations is, at this point, out of reach.

The author owes many debts of gratitude to other researchers in this area.
Several have contributed directly to this work. Of particular note are Chris
Beattie, Mark Embree, Lothar Reichel, Rich Lehoucq, Chao Yang and Kristi
Maschhoff. A final note of thanks goes to Arieh Iserles for his encouragement
and unbelievable patience.

Eigenvalue methods 581

REFERENCES

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen (1992),
LAPACK User’s Guide, SIAM, Philadelphia, PA.

J. Baglama, D. Calvetti and L. Reichel (1996), ‘Iterative methods for the compu-
tation of a few eigenvalues of a large symmetric matrix’, BIT 36, 400–440.

J. Baglama, D. Calvetti and L. Reichel (1998), ‘Fast Leja points’, ETNA 7, 124–
140.

Z. Bai and G. W. Stewart (1997), ‘SRRIT: A FORTRAN subroutine to calculate
the dominant invariant subspace of a nonsymmetric matrix’, ACM Trans.

Math. Software 23, 494.

C. Beattie, M. Embree and J. Rossi (2001), Convergence of restarted Krylov
subspaces to invariant subspaces, Numerical Analysis Technical Report 01/21,
OUCL, Oxford, UK.

M. Berry (1992), ‘Large scale singular value computations’, Supercomput. Appl.

6, 13–49.

E. A. Burroughs, L. A. Romero, R. B. Lehoucq and A. J. Salinger (2001), Large
scale eigenvalue calculations for computing the stability of buoyancy driven
flows, Technical Report 2001-0113J, Sandia National Laboratories. Submitted
to J. Comput. Phys.

D. Calvetti, L. Reichel and D. Sorensen (1994), ‘An implicitly restarted Lanczos
method for large symmetric eigenvalue problems’, ETNA 2, 1–21.

M. Crouzeix, B. Philippe and M. Sadkane (1994), ‘The Davidson method’, SIAM

J. Sci. Comput. 15, 62–76.

J. Cullum and W. E. Donath (1974), A block Lanczos algorithm for computing the
q algebraically largest eigenvalues and a corresponding eigenspace for large,
sparse symmetric matrices, in Proc. 1974 IEEE Conference on Decision and

Control, New York, pp. 505–509.

J. Cullum and R. A. Willoughby (1981), ‘Computing eigenvalues of very large
symmetric matrices: An implementation of a Lanczos algorithm with no
reorthogonalization’, J. Comput. Phys. 434, 329–358.

J. Cullum and R. A. Willoughby (1985), Lanczos Algorithms for Large Symmetric

Eigenvalue Computations, Vol. 1: Theory, Birkhäuser, Boston, MA.

J. Cullum and R. A. Willoughby (1986), A practical procedure for computing
eigenvalues of large sparse nonsymmetric matrices, in Large Scale Eigenvalue

Problems (J. Cullum and R. A. Willoughby, eds), North-Holland, Amsterdam,
pp. 193–240.

J. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart (1976), ‘Reorthogonaliza-
tion and stable algorithms for updating the Gram–Schmidt QR factorization’,
Math. Comput. 30, 772–795.

E. R. Davidson (1975), ‘The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real symmetric matrices’, J. Comput.

Phys. 17, 87–94.

E. R. Davidson (1993), ‘Monster matrices: Their eigenvalues and eigenvectors’,
Comput. Phys. 7, 519–522.

582 D. C. Sorensen

M. P. Debicki, P. Jedrzejewski, J. Mielewski, P. Przybyszewski and M. Mrozowski
(1995), Application of the Arnoldi method to the solution of electromagnetic
eigenproblems on the multiprocessor power challenge architecture, Preprint
19/95, Department of Electronics, Technical University of Gdansk, Gdansk,
Poland.

J. Dongarra and R. C. Whaley (1995), A User’s Guide to the BLACS v1.0, Technical
Report UT CS-95-281, LAPACK Working Note #94, University of Tennessee.

J. J. Dongarra, J. DuCroz, I. Duff and S. Hammarling (1990), ‘A set of Level 3 Basic
Linear Algebra Subprograms: Model implementation and test programs’,
ACM Trans. Math. Software 16, 18–28.

J. J. Dongarra, J. DuCroz, S. Hammarling and R. Hanson (1988), ‘An extended set
of Fortran Basic Linear Algebra Subprograms’, ACM Trans. Math. Software

14, 1–17.
T. Ericsson and A. Ruhe (1980), ‘The spectral transformation Lanczos method

for the numerical solution of large sparse generalized symmetric eigenvalue
problems’, Math. Comput. 35, 1251–1268.

B. Fischer and L. Reichel (1989), ‘Newton interpolation in Chebyshev and Fejér
points’, Math. Comput. 53, 265–278.

D. R. Fokkema, G. L. G. Sleijpen and H. A. van der Vorst (1996), Jacobi–Davidson
style QR and QZ algorithms for the partial reduction of matrix pencils,
Technical Report 941, Mathematical Institute, Utrecht University.

R. W. Freund (1992), ‘Conjugate gradient-type methods for a linear systems with
complex symmetric coefficient matrices’, SIAM J. Sci. Comput. 13, 425–448.

R. W. Freund and N. M. Nachtigal (1991), ‘QMR: A quasi-minimal residual method
for non-Hermitian linear systems’, Numer. Math. 60, 315–339.

D. Gaier (1987), Lectures on Complex Approximation, Birkhäuser.
T. J. Garratt (1991), The numerical detection of Hopf bifurcations in large

systems arising in fluid mechanics, PhD thesis, University of Bath, School
of Mathematical Sciences, Bath, UK.

G. H. Golub and R. Underwood (1977), The block Lanczos method for computing
eigenvalues, in Mathematical Software III (J. Rice, ed.), Academic Press, New
York, pp. 361–377.

G. H. Golub and C. F. Van Loan (1996), Matrix Computations, The Johns Hopkins
University Press, Baltimore.

R. G. Grimes, J. G. Lewis and H. D. Simon (1994), ‘A shifted block Lanczos
algorithm for solving sparse symmetric generalized eigenproblems’, SIAM J.

Matrix Anal. Appl. 15, 228–272.
Z. Jia (1995), ‘The convergence of generalized Lanczos methods for large unsym-

metric eigenproblems’, SIAM J. Matrix Anal. Appl. 16, 843–862.
W. Karush (1951), ‘An iterative method for finding characteristics vectors of a

symmetric matrix’, Pacific J. Math. 1, 233–248.
A. Knyazev (2001), ‘Toward the optimal preconditioned eigensolver: Locally op-

timal block preconditioned conjugate gradient method’, SIAM J. Sci. Comput.

23, 517–541.
C. Lanczos (1950), ‘An iteration method for the solution of the eigenvalue problem

of linear differential and integral operators’, J. Res. Nat. Bur. Standards

45, 255–282. Research Paper 2133.

Eigenvalue methods 583

C. Lawson, R. Hanson, D. Kincaid and F. Krogh (1979), ‘Basic Linear Algebra
Subprograms for Fortran usage.’, ACM Trans. Math. Software 5, 308–329.

R. B. Lehoucq (1995), Analysis and Implementation of an Implicitly Restarted Iter-
ation, PhD thesis, Rice University, Houston, TX. Also available as Technical
report TR95-13, Department of Computational and Applied Mathematics.

R. B. Lehoucq (2001), ‘Implicitly restarted Arnoldi methods and subspace itera-
tion’, SIAM J. Matrix Anal. Appl. 23, 551–562.

R. B. Lehoucq and A. G. Salinger (2001), ‘Large-scale eigenvalue calculations for
stability analysis of steady flows on massively parallel computers’, Internat.

J. Numer. Methods Fluids 36, 309–327.
R. B. Lehoucq and J. A. Scott (1996), An evaluation of software for computing

eigenvalues of sparse nonsymmetric matrices, Preprint MCS-P547-1195, Ar-
gonne National Laboratory, Argonne, IL.

R. B. Lehoucq and D. C. Sorensen (1996), ‘Deflation techniques for an implicitly
restarted Arnoldi iteration’, SIAM J. Matrix Anal. Appl. 17, 789–821.

R. B. Lehoucq, D. C. Sorensen and C. Yang (1998), ARPACK Users Guide:

Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi

methods, SIAM Publications, Philadelphia, PA.
T. A. Manteuffel (1978), ‘Adaptive procedure for estimating parameters for the

nonsymmetric Tchebychev iteration’, Numer. Math. 31, 183–208.
K. J. Maschhoff and D. C. Sorensen (1996), P ARPACK: An efficient portable

large scale eigenvalue package for distributed memory parallel architectures,
in Applied Parallel Computing in Industrial Problems and Optimization,
Springer, Berlin, pp. 478–486.

K. Meerbergen (1996), Robust methods for the calculation of rightmost eigenvalues
of nonsymmetric eigenvalue problems, PhD thesis, Katholieke Universiteit
Leuven, Belgium.

K. Meerbergen and A. Spence (1997), ‘Implicitly restarted Arnoldi with purification
for the shift-invert transformation’, Math. Comput. 218, 667–689.

R. B. Morgan (1991), ‘Computing interior eigenvalues of large matrices’, Lin. Alg.

Appl. 154–156, 289–309.
R. B. Morgan (1996), ‘On restarting the Arnoldi method for large nonsymmetric

eigenvalue problems’, Math. Comput. 65, 1213–1230.
R. B. Morgan and D. S. Scott (1993), ‘Preconditioning the Lanczos algorithm for

sparse symmetric eigenvalue problems’, SIAM J. Sci. Comput. 14, 585–593.
MPI Forum (1994), ‘MPI: A Message-Passing Interface standard’, Internat. J. Su-

percomput. Appl. High Performance Comput. Special issue on MPI. Electronic
form: ftp://www.netlib.org/mpi/mpi-report.ps.

J. Olsen, P. Jørgensen and J. Simons (1990), ‘Passing the one-billion limit in full
configuration-interaction (FCI) calculations’, Chem. Phys. Lett. 169, 463–472.

C. C. Paige (1971), The computation of eigenvalues and eigenvectors of very large
sparse matrices, PhD thesis, University of London.

C. C. Paige, B. N. Parlett and H. A. van der Vorst (1995), ‘Approximate solutions
and eigenvalue bounds from Krylov subspaces’, Numer. Lin. Alg. Appl. 2, 115–
134.

B. N. Parlett (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood
Cliffs, NJ.

584 D. C. Sorensen

B. N. Parlett and J. K. Reid (1981), ‘Tracking the progress of the Lanczos algorithm
for large symmetric eigenproblems’, IMA J. Numer. Anal. 1, 135–155.

B. N. Parlett and D. Scott (1979), ‘The Lanczos algorithm with selective orthogon-
alization’, Math. Comput. 33, 217–238.

L. Reichel (1990), ‘Newton interpolation at Leja points’, BIT 30, 332–346.
A. Ruhe (1994a), ‘The rational Krylov algorithm for nonsymmetric eigenvalue

problems, III: Complex shifts for real matrices’, BIT 34, 165–176.
A. Ruhe (1994b), ‘Rational Krylov algorithms for nonsymmetric eigenvalue prob-

lems, II: Matrix pairs’, Lin. Alg. Appl. 197–198, 283–295.
Y. Saad (1980), ‘Variations on Arnoldi’s method for computing eigenelements of

large unsymmetric matrices’, Lin. Alg. Appl. 34, 269–295.
Y. Saad (1984), ‘Chebyshev acceleration techniques for solving nonsymmetric

eigenvalue problems’, Math. Comput. 42, 567–588.
Y. Saad (1992), Numerical Methods for Large Eigenvalue Problems, Manchester

University Press, Manchester, UK.
Y. Saad (1994), ‘ILUT: A dual threshold incomplete LU factorization’, Numer.

Lin. Alg. Appl. 1, 387–402.
J. A. Scott (200x), ‘An Arnoldi code for computing selected eigenvalues of sparse

real unsymmetric matrices’, ACM Trans. Math. Software.
H. Simon (1984), ‘Analysis of the symmetric Lanczos algorithm with reorthogon-

alization methods’, Lin. Alg. Appl. 61, 101–131.
V. Simoncini (1996), ‘Ritz and pseudo-Ritz values using matrix polynomials’, Lin.

Alg. Appl. 241–243, 787–801.
G. L. G. Sleijpen and H. A. van der Vorst (1995), ‘An overview of approaches

for the stable computation of hybrid BiCG methods’, Appl. Numer. Math.

19, 235–254.
G. L. G. Sleijpen and H. A. van der Vorst (1996), ‘A Jacobi–Davidson iteration

method for linear eigenvalue problems’, SIAM J. Matrix Anal. Appl. 17, 401–
425.

D. C. Sorensen (1992), ‘Implicit application of polynomial filters in a k-step Arnoldi
method’, SIAM J. Matrix Anal. Appl. 13, 357–385.

D. C. Sorensen and C. Yang (1998), ‘A truncated RQ-iteration for large scale
eigenvalue calculations’, SIAM J. Matrix Anal. Appl. 19, 1045–1073.

A. Stathopoulos, Y. Saad and K. Wu (1998), ‘Dynamic thick restarting of the
Davidson, and the implicitly restarted Arnoldi methods’, SIAM J. Sci.

Comput. 19, 227–245.
G. W. Stewart (2001), ‘A Krylov–Schur algorithm for large eigenproblems’, SIAM

J. Matrix Anal. Appl. 23, 601–614.
W. J. Stewart and A. Jennings (1981), ‘Algorithm 570: LOPSI, A Fortran

subroutine for approximations to right or left eigenvectors corresponding to
the dominant set of eigenvalues of a real symmetric matrix’, ACM Trans.

Math. Software 7, 230–232.
L. N. Trefethen (1992), Pseudospectra of matrices, in Numerical Analysis 1991

(D. F. Griffiths and G. A. Watson, eds), Longman, pp. 234–266.
L. N. Trefethen (1999), Computation of pseudospectra, in Acta Numerica, Vol. 9,

Cambridge University Press, pp. 247–296.

